11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vascular Mechanobiology: Homeostasis, Adaptation, and Disease

      1 , 1 , 2
      Annual Review of Biomedical Engineering
      Annual Reviews

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cells of the vascular wall are exquisitely sensitive to changes in their mechanical environment. In healthy vessels, mechanical forces regulate signaling and gene expression to direct the remodeling needed for the vessel wall to maintain optimal function. Major diseases of arteries involve maladaptive remodeling with compromised or lost homeostatic mechanisms. Whereas homeostasis invokes negative feedback loops at multiple scales to mediate mechanobiological stability, disease progression often occurs via positive feedback that generates mechanobiological instabilities. In this review, we focus on the cell biology, wall mechanics, and regulatory pathways associated with arterial health and how changes in these processes lead to disease. We discuss how positive feedback loops arise via biomechanical and biochemical means. We conclude that inflammation plays a central role in overriding homeostatic pathways and suggest future directions for addressing therapeutic needs.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          Origin and physiological roles of inflammation.

          Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide and peroxynitrite in health and disease.

            The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expert consensus document on arterial stiffness: methodological issues and clinical applications.

              In recent years, great emphasis has been placed on the role of arterial stiffness in the development of cardiovascular diseases. Indeed, the assessment of arterial stiffness is increasingly used in the clinical assessment of patients. Although several papers have previously addressed the methodological issues concerning the various indices of arterial stiffness currently available, and their clinical applications, clinicians and researchers still report difficulties in selecting the most appropriate methodology for their specific use. This paper summarizes the proceedings of several meetings of the European Network for Non-invasive Investigation of Large Arteries and is aimed at providing an updated and practical overview of the most relevant methodological aspects and clinical applications in this area.
                Bookmark

                Author and article information

                Journal
                Annual Review of Biomedical Engineering
                Annu. Rev. Biomed. Eng.
                Annual Reviews
                1523-9829
                1545-4274
                July 13 2021
                July 13 2021
                : 23
                : 1
                : 1-27
                Affiliations
                [1 ]Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA;
                [2 ]Department of Cell Biology, Department of Internal Medicine (Cardiology), and Cardiovascular Research Center, Yale University, New Haven, Connecticut 06520, USA
                Article
                10.1146/annurev-bioeng-092419-060810
                34255994
                b9fe165c-d9fe-4de1-b335-284fd0972a88
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article