11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polyglandular Autoimmune Syndrome Type III with Primary Hypoparathyroidism

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polyglandular autoimmune syndrome is defined as multiple endocrine gland insufficiencies accompanied by autoimmune diseases of the endocrine and nonendocrine system. After Schmidt introduced a case of nontuberculosis adrenal gland dysfunction with thyroiditis in 1926, Neufeld defined polyglandular autoimmune syndrome by I, II, and III subtypes in 1980 by their presentation of occurrence age, heredity methods, relationship with human leukocyte antigen, and accompanying diseases. We report a case of a 32-year-old female with polyglandular autoimmune syndrome III accompanied by type 1 diabetes mellitus that was treated with insulin (36 units per day) for 11 years. She had insulin deficiency and Hashimoto thyroiditis as an autoimmune disorder. In addition, she had several features similar to Albright's hereditary osteodystrophy including short stature, truncal obesity, round face, short neck, low intelligence (full IQ 84), and decreased memory. Although Albright's hereditary osteodystrophy is morphological evidence of pseudohypoparathyroidism or pseudopseudohypoparathyroidism, she had primary hypoparathyroidism on laboratory results. Here, we report a case of polyglandular autoimmune syndrome III with type 1 diabetes mellitus, autoimmune thyroiditis, and primary hypoparathyroidism, accompanied by clinical features similar to Albright's hereditary osteodystrophy.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Positional cloning of the APECED gene.

          Autoimmune polyglandular syndrome type I (APS 1, also called APECED) is an autosomal-recessive disorder that maps to human chromosome 21q22.3 between markers D21S49 and D21S171 by linkage studies. We have isolated a novel gene from this region, AIRE (autoimmune regulator), which encodes a protein containing motifs suggestive of a transcription factor including two zinc-finger (PHD-finger) motifs, a proline-rich region and three LXXLL motifs. Two mutations, a C-->T substitution that changes the Arg 257 (CGA) to a stop codon (TGA) and an A-->G substitution that changes the Lys 83 (AAG) to a Glu codon (GAG), were found in this novel gene in Swiss and Finnish APECED patients. The Arg257stop (R257X) is the predominant mutation in Finnish APECED patients, accounting for 10/12 alleles studied. These results indicate that this gene is responsible for the pathogenesis of APECED. The identification of the gene defective in APECED should facilitate the genetic diagnosis and potential treatment of the disease and further enhance our general understanding of the mechanisms underlying autoimmune diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting.

            The heterotrimeric G protein G(s) couples hormone receptors (as well as other receptors) to the effector enzyme adenylyl cyclase and is therefore required for hormone-stimulated intracellular cAMP generation. Receptors activate G(s) by promoting exchange of GTP for GDP on the G(s) alpha-subunit (G(s)alpha) while an intrinsic GTPase activity of G(s)alpha that hydrolyzes bound GTP to GDP leads to deactivation. Mutations of specific G(s)alpha residues (Arg(201) or Gln(227)) that are critical for the GTPase reaction lead to constitutive activation of G(s)-coupled signaling pathways, and such somatic mutations are found in endocrine tumors, fibrous dysplasia of bone, and the McCune-Albright syndrome. Conversely, heterozygous loss-of-function mutations may lead to Albright hereditary osteodystrophy (AHO), a disease characterized by short stature, obesity, brachydactyly, sc ossifications, and mental deficits. Similar mutations are also associated with progressive osseous heteroplasia. Interestingly, paternal transmission of GNAS1 mutations leads to the AHO phenotype alone (pseudopseudohypoparathyroidism), while maternal transmission leads to AHO plus resistance to several hormones (e.g., PTH, TSH) that activate G(s) in their target tissues (pseudohypoparathyroidism type IA). Studies in G(s)alpha knockout mice demonstrate that G(s)alpha is imprinted in a tissue-specific manner, being expressed primarily from the maternal allele in some tissues (e.g., renal proximal tubule, the major site of renal PTH action), while being biallelically expressed in most other tissues. Disrupting mutations in the maternal allele lead to loss of G(s)alpha expression in proximal tubules and therefore loss of PTH action in the kidney, while mutations in the paternal allele have little effect on G(s)alpha expression or PTH action. G(s)alpha has recently been shown to be also imprinted in human pituitary glands. The G(s)alpha gene GNAS1 (as well as its murine ortholog Gnas) has at least four alternative promoters and first exons, leading to the production of alternative gene products including G(s)alpha, XLalphas (a novel G(s)alpha isoform that is expressed only from the paternal allele), and NESP55 (a chromogranin-like protein that is expressed only from the maternal allele). A fourth alternative promoter and first exon (exon 1A) located approximately 2.5 kb upstream of the G(s)alpha promoter is normally methylated on the maternal allele and transcriptionally active on the paternal allele. In patients with isolated renal resistance to PTH (pseudohypoparathyroidism type IB), the exon 1A promoter region has a paternal-specific imprinting pattern on both alleles (unmethylated, transcriptionally active), suggesting that this region is critical for the tissue-specific imprinting of G(s)alpha. The GNAS1 imprinting defect in pseudohypoparathyroidism type IB is predicted to decrease G(s)alpha expression in renal proximal tubules. Studies in G(s)alpha knockout mice also demonstrate that this gene is critical in the regulation of lipid and glucose metabolism.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Autoimmune polyglandular syndromes.

                Bookmark

                Author and article information

                Journal
                Endocrinol Metab (Seoul)
                Endocrinol Metab (Seoul)
                ENM
                Endocrinology and Metabolism
                Korean Endocrine Society
                2093-596X
                2093-5978
                September 2013
                13 September 2013
                : 28
                : 3
                : 236-240
                Affiliations
                [1 ]Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea.
                [2 ]Department of Radiology, Keimyung University School of Medicine, Daegu, Korea.
                Author notes
                Corresponding author: Ho-Chan Cho. Department of Internal Medicine, Keimyung University School of Medicine, 56 Dalseong-ro, Jung-gu, Daegu 700-712, Korea. Tel: +82-53-250-7951, Fax: +82-53-250-7982, ho3632@ 123456naver.com
                Article
                10.3803/EnM.2013.28.3.236
                3811692
                ba232cca-5cf0-43fd-a43b-819486ec7d4b
                Copyright © 2013 Korean Endocrine Society

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 August 2012
                : 04 January 2013
                Categories
                Case Report

                polyendocrinopathies,autoimmune,primary hypoparathyroidism

                Comments

                Comment on this article