20
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Novel Methods in Vascular and Lymphatic Physiology

      Submit here before June 30, 2025

      About Journal of Vascular Research: 1.8 Impact Factor I 3.4 CiteScore I 0.486 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Circulating Bone Marrow Cells Can Contribute to Neointimal Formation

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To examine the source of smooth muscle-like cells during vascular healing, C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10<sup>6</sup> nucleated bone marrow cells from congenic (Ly 5.1) male donors. Successful repopulation (88.4 ± 4.9%) by donor marrow was demonstrated in the female mice by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody after 4 weeks. The arteries of the female mice were then subjected to two types of insult: (1) The iliac artery was scratch-injured by 5 passes of a probe causing severe medial damage. After 4 weeks, the arterial lumen was obliterated by a cell-rich neointima, with cells containing α smooth muscle actin present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y-chromosome-specific probe. (2) In an organized arterial thrombus formed by inserting an 8-0 silk suture into the left common carotid artery, donor cells staining with α smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage. Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: not found
          • Article: not found

          Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta.

            Marrow stromal cells from wild-type mice were infused into transgenic mice that had a phenotype of fragile bones resembling osteogenesis imperfecta because they expressed a human minigene for type I collagen. In mice that were irradiated with potentially lethal levels (700 cGy) or sublethal levels (350 cGy), DNA from the donor marrow stromal cells was detected consistently in marrow, bone, cartilage, and lung either 1 or 2.5 mo after the infusions. The DNA also was detected but less frequently in the spleen, brain, and skin. There was a small but statistically significant increase in both collagen content and mineral content of bone 1 mo after the infusion. Similar results were obtained with infusion of relatively large amounts of wild-type whole marrow cells into the transgenic mice. In experiments in which male marrow stromal cells were infused into a female osteogenesis imperfecta-transgenic mouse, fluorescense in situ hybridization assays for the Y chromosome indicated that, after 2.5 mo, donor male cells accounted for 4-19% of the fibroblasts or fibroblast-like cells obtained in primary cultures of the lung, calvaria, cartilage, long bone, tail, and skin. In a parallel experiment in which whole marrow cells from a male mouse were infused into a female immunodeficient rag-2 mouse, donor male cells accounted for 4-6% of the fibroblasts or fibroblast-like cells in primary cultures. The results support previous suggestions that marrow stromal cells or related cells in marrow serve as a source for continual renewal of cells in a number of nonhematopoietic tissues.
              Bookmark

              Author and article information

              Journal
              JVR
              J Vasc Res
              10.1159/issn.1018-1172
              Journal of Vascular Research
              S. Karger AG
              1018-1172
              1423-0135
              2001
              April 2001
              13 April 2001
              : 38
              : 2
              : 113-119
              Affiliations
              aCentre for Research in Vascular Biology, University of Queensland, Brisbane, Australia, bDivision of Cardiovascular Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
              Article
              51038 J Vasc Res 2001;38:113–119
              10.1159/000051038
              11316947
              ba52367d-9843-4de8-8839-20c0855295e8
              © 2001 S. Karger AG, Basel

              Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

              History
              Page count
              Figures: 2, References: 26, Pages: 7
              Categories
              Research Paper

              General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
              Stromal cells,Restenosis,In situ hybridization,Tunica intima,Vascular injury

              Comments

              Comment on this article