27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased survival of cancer cells mediated by high levels of ionizing radiation (IR) reduces the effectiveness of radiation therapy for non-small cell lung cancer (NSCLC). In the present study, danshensu which is a selected component of traditional oriental medicine (TOM) compound was found to reduce the radioresistance of NSCLC by inhibiting the nuclear factor-κB (NF-κB) pathway. Of the various TOM compounds reported to inhibit the IR activation of NF-κB, danshensu was chosen as a final candidate based on the results of structural comparisons with human metabolites and monoamine oxidase B (MAOB) was identified as the putative target enzyme. Danshensu decreased the activation of NF-κB by inhibiting MAOB activity in A549 and NCI-H1299 NSCLC cells. Moreover, it suppressed IR-induced epithelial-to-mesenchymal transition, expressions of NF-κB-regulated prosurvival and proinflammatory genes, and in vivo radioresistance of mouse xenograft models. Taken together, this study shows that danshensu significantly reduces MAOB activity and attenuates NF-κB signaling to elicit the radiosensitization of NSCLC.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          TCM Database@Taiwan: The World's Largest Traditional Chinese Medicine Database for Drug Screening In Silico

          Rapid advancing computational technologies have greatly speeded up the development of computer-aided drug design (CADD). Recently, pharmaceutical companies have increasingly shifted their attentions toward traditional Chinese medicine (TCM) for novel lead compounds. Despite the growing number of studies on TCM, there is no free 3D small molecular structure database of TCM available for virtual screening or molecular simulation. To address this shortcoming, we have constructed TCM Database@Taiwan (http://tcm.cmu.edu.tw/) based on information collected from Chinese medical texts and scientific publications. TCM Database@Taiwan is currently the world's largest non-commercial TCM database. This web-based database contains more than 20,000 pure compounds isolated from 453 TCM ingredients. Both cdx (2D) and Tripos mol2 (3D) formats of each pure compound in the database are available for download and virtual screening. The TCM database includes both simple and advanced web-based query options that can specify search clauses, such as molecular properties, substructures, TCM ingredients, and TCM classification, based on intended drug actions. The TCM database can be easily accessed by all researchers conducting CADD. Over the last eight years, numerous volunteers have devoted their time to analyze TCM ingredients from Chinese medical texts as well as to construct structure files for each isolated compound. We believe that TCM Database@Taiwan will be a milestone on the path towards modernizing traditional Chinese medicine.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            TCM: Made in China.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4.

              Metastasis of cancer cells is a complex process involving multiple steps including invasion, angiogenesis, and trafficking of cancer cells through blood vessels, extravasations, organ-specific homing, and growth. While matrix metalloproteinases, urokinase-type plasminogen activator, and cytokines play a major role in invasion and angiogenesis, chemokines such as stromal derived factor-1alpha (SDF-1alpha) and their receptors such as CXCR4 are thought to play a critical role in motility, homing, and proliferation of cancer cells at specific metastatic sites. We and others have previously reported that the extracellular signal-activated transcription factor NF-kappaB up-regulates the expression of matrix metalloproteinases, urokinase-type plasminogen activator, and cytokines in highly metastatic breast cancer cell lines. In this report, we demonstrate that NF-kappaB regulates the motility of breast cancer cells by directly up-regulating the expression of CXCR4. Overexpression of the inhibitor of kappaB (IkappaB) in breast cancer cells with constitutive NF-kappaB activity resulted in reduced expression of CXCR4 and a corresponding loss of SDF-1alpha-mediated migration in vitro. Introduction of CXCR4 cDNA into IkappaB-expressing cells restored SDF-1alpha-mediated migration. Electrophoretic mobility shift assays and transient transfection assays revealed that the NF-kappaB subunits p65 and p50 bind directly to sequences within the -66 to +7 region of the CXCR4 promoter and activate transcription. We also show that the cell surface expression of CXCR4 and the SDF-1alpha-mediated migration are enhanced in breast cancer cells isolated from mammary fat pad xenografts compared with parental cells grown in culture. A further increase in CXCR4 cell surface expression and SDF-1alpha-mediated migration was observed with cancer cells that metastasized to the lungs. Taken together, these results implicate NF-kappaB in the migration and the organ-specific homing of metastatic breast cancer cells.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                24 February 2016
                2016
                : 6
                : 21986
                Affiliations
                [1 ]Department of Integrated Biological Science, Pusan National University , Busan, Republic of Korea
                [2 ]Department of Chemistry, Washington State University , Pullman, Washington, USA
                [3 ]Nuclear Science Research Institute, Pusan National University , Busan, Republic of Korea
                [4 ]Department of Biological Sciences, Pusan National University , Busan, Republic of Korea
                [5 ]Department of Nanomaterial Engineering and Nanoconvergence Technology, Pusan National University , Miryang, Republic of Korea
                Author notes
                [*]

                These authors contributed equally to this work.

                [†]

                Present address: Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea.

                Article
                srep21986
                10.1038/srep21986
                4764943
                26906215
                ba7e207e-4a01-4073-b644-a9351f02f7a7
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 03 November 2015
                : 03 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article