7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Selective Methanol‐to‐Formate Electrocatalytic Conversion on Branched Nickel Carbide

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction.

          Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm(-2) per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing the aforementioned surface area measurements, one can determine electrocatalyst turnover frequencies. The reported protocol was used to examine the oxygen-evolution activity of the following systems in acidic and alkaline solutions: CoO(x), CoPi, CoFeO(x), NiO(x), NiCeO(x), NiCoO(x), NiCuO(x), NiFeO(x), and NiLaO(x). The oxygen-evolving activity of an electrodeposited IrO(x) catalyst was also investigated for comparison. Two general observations are made from comparing the catalytic performance of the OER catalysts investigated: (1) in alkaline solution, every non-noble metal system achieved 10 mA cm(-2) current densities at similar operating overpotentials between 0.35 and 0.43 V, and (2) every system but IrO(x) was unstable under oxidative conditions in acidic solutions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices.

            Objective comparisons of electrocatalyst activity and stability using standard methods under identical conditions are necessary to evaluate the viability of existing electrocatalysts for integration into solar-fuel devices as well as to help inform the development of new catalytic systems. Herein, we use a standard protocol as a primary screen for evaluating the activity, short-term (2 h) stability, and electrochemically active surface area (ECSA) of 18 electrocatalysts for the hydrogen evolution reaction (HER) and 26 electrocatalysts for the oxygen evolution reaction (OER) under conditions relevant to an integrated solar water-splitting device in aqueous acidic or alkaline solution. Our primary figure of merit is the overpotential necessary to achieve a magnitude current density of 10 mA cm(-2) per geometric area, the approximate current density expected for a 10% efficient solar-to-fuels conversion device under 1 sun illumination. The specific activity per ECSA of each material is also reported. Among HER catalysts, several could operate at 10 mA cm(-2) with overpotentials <0.1 V in acidic and/or alkaline solutions. Among OER catalysts in acidic solution, no non-noble metal based materials showed promising activity and stability, whereas in alkaline solution many OER catalysts performed with similar activity achieving 10 mA cm(-2) current densities at overpotentials of ~0.33-0.5 V. Most OER catalysts showed comparable or better specific activity per ECSA when compared to Ir and Ru catalysts in alkaline solutions, while most HER catalysts showed much lower specific activity than Pt in both acidic and alkaline solutions. For select catalysts, additional secondary screening measurements were conducted including Faradaic efficiency and extended stability measurements.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A review of anode catalysis in the direct methanol fuel cell

                Bookmark

                Author and article information

                Contributors
                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                1433-7851
                1521-3773
                November 16 2020
                September 09 2020
                November 16 2020
                : 59
                : 47
                : 20826-20830
                Affiliations
                [1 ]Molecular Electrochemistry Laboratory Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China 610054 Chengdu P. R. China
                [2 ]School of Chemistry and Environment Southwest Minzu University 610041 Chengdu P. R. China
                [3 ]Catalonia Institute for Energy Research—IREC Sant Adrià de Besòs 08930 Barcelona Spain
                [4 ]Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST Campus UAB Bellaterra 08193 Barcelona Spain
                [5 ]ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
                [6 ]Institute of Energy Technologies Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering Universitat Politècnica de Catalunya, EEBE 08019 Barcelona Spain
                Article
                10.1002/anie.202004301
                bb3cd93a-9767-4a79-86cb-57b2a00a6b1f
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article