14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found

      Targeting of Integrin-Linked Kinase with Small Interfering RNA Inhibits VEGF-Induced Angiogenesis in Retinal Endothelial Cells

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The pathological angiogenesis in the retina is a major cause of vision loss at all ages. Vascular endothelial growth factor (VEGF) has been reported as the most potent inducer of retinal neovascularization. We previously demonstrated that integrin-linked kinase (ILK) regulates retinal vascular endothelial proliferation, migration and tube formation. However, little is known about the existence of cross-talk between ILK and VEGF signaling in retinal vascular endothelial cells and the probable regulatory role of ILK during VEGF-induced retinal endothelial cell migration. The purpose of this work was to investigate the role of ILK in VEGF-induced retinal neovascularization. Methods: Cultured retinal endothelial cells (RF/6A) were knocked down for ILK using a small interfering RNA (siRNA). For this, cellular ILK expression was quantified by real-time quantitative PCR, Western blot analysis and immunocytochemical assay, and cytotoxicity of transfection was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. ILK siRNA-transfected RF/6A cells were induced by VEGF, and cell proliferation was determined by the MTT assay, cell migration was measured by cell counting in modified Boyden chambers and cell spreading and tube formation assays were performed. Furthermore, the impact of ILK-specific siRNA on VEGF-induced VEGF receptor 2 (VEGFR-2) phosphorylation and activation of downstream signal pathways were tested by Western blot analysis. Results: Both ILK mRNA and protein levels were virtually undetectable after transfection with ILK siRNA, and blocking the expression of ILK by siRNA significantly inhibited VEGF-induced retinal endothelial cell proliferation, attachment, spreading, migration and tube formation. Knockdown of ILK effectively suppressed VEGF-induced p38 mitogen-activated protein kinase (MAPK) and Akt phosphorylation, but had no effects on VEGFR-2, extracellular signal-regulated protein kinase and Jun N terminus kinase phosphorylation. Conclusion: We conclude that knockdown of ILK with siRNA effectively inhibited VEGF-induced retinal endothelial cell attachment, spreading, migration and tube formation. p38 MAPK and Akt are downstream signaling pathways of the ILK that regulated VEGF-induced retinal neovascularization. Targeting ILK may be a potentially useful therapeutic approach for treating ocular neovascularization.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular-specific growth factors and blood vessel formation.

          A recent explosion in newly discovered vascular growth factors has coincided with exploitation of powerful new genetic approaches for studying vascular development. An emerging rule is that all of these factors must be used in perfect harmony to form functional vessels. These new findings also demand re-evaluation of therapeutic efforts aimed at regulating blood vessel growth in ischaemia, cancer and other pathological settings.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiogenesis: an organizing principle for drug discovery?

            Angiogenesis--the process of new blood-vessel growth--has an essential role in development, reproduction and repair. However, pathological angiogenesis occurs not only in tumour formation, but also in a range of non-neoplastic diseases that could be classed together as 'angiogenesis-dependent diseases'. By viewing the process of angiogenesis as an 'organizing principle' in biology, intriguing insights into the molecular mechanisms of seemingly unrelated phenomena might be gained. This has important consequences for the clinical use of angiogenesis inhibitors and for drug discovery, not only for optimizing the treatment of cancer, but possibly also for developing therapeutic approaches for various diseases that are otherwise unrelated to each other.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

              The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.
                Bookmark

                Author and article information

                Journal
                ORE
                Ophthalmic Res
                10.1159/issn.0030-3747
                Ophthalmic Research
                S. Karger AG
                0030-3747
                1423-0259
                2013
                March 2013
                18 December 2012
                : 49
                : 3
                : 139-149
                Affiliations
                aDepartment of Ophthalmology, Peking University People’s Hospital, bKey Laboratory of Vision Loss and Restoration, Ministry of Education, and cDepartment of Ophthalmology, China Academy of Chinese Medical Sciences Eye Hospital, Beijing, and dDepartment of Ophthalmology, Shandong Provincial Hospital, Jinan, China
                Author notes
                *Wenzhen Yu, Department of Ophthalmology, Peking University People’s Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Xizhimen South Street 11, Xi Cheng District 100044, Beijing (China), E-Mail drwenzhenyu@163.com
                Article
                345070 Ophthalmic Res 2013;49:139–149
                10.1159/000345070
                23258222
                bb4861cd-a378-478b-9760-7bfc92cffccf
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 26 September 2012
                : 28 September 2012
                Page count
                Figures: 8, Pages: 11
                Categories
                Original Paper

                Vision sciences,Ophthalmology & Optometry,Pathology
                Integrin-linked kinase,Retinal vascular endothelial cells,Retinal neovascularization,Vascular endothelial growth factor

                Comments

                Comment on this article