38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recurrent Processing during Object Recognition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How does the brain learn to recognize objects visually, and perform this difficult feat robustly in the face of many sources of ambiguity and variability? We present a computational model based on the biology of the relevant visual pathways that learns to reliably recognize 100 different object categories in the face of naturally occurring variability in location, rotation, size, and lighting. The model exhibits robustness to highly ambiguous, partially occluded inputs. Both the unified, biologically plausible learning mechanism and the robustness to occlusion derive from the role that recurrent connectivity and recurrent processing mechanisms play in the model. Furthermore, this interaction of recurrent connectivity and learning predicts that high-level visual representations should be shaped by error signals from nearby, associated brain areas over the course of visual learning. Consistent with this prediction, we show how semantic knowledge about object categories changes the nature of their learned visual representations, as well as how this representational shift supports the mapping between perceptual and conceptual knowledge. Altogether, these findings support the potential importance of ongoing recurrent processing throughout the brain’s visual system and suggest ways in which object recognition can be understood in terms of interactions within and between processes over time.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Speed of processing in the human visual system.

          How long does it take for the human visual system to process a complex natural image? Subjectively, recognition of familiar objects and scenes appears to be virtually instantaneous, but measuring this processing time experimentally has proved difficult. Behavioural measures such as reaction times can be used, but these include not only visual processing but also the time required for response execution. However, event-related potentials (ERPs) can sometimes reveal signs of neural processing well before the motor output. Here we use a go/no-go categorization task in which subjects have to decide whether a previously unseen photograph, flashed on for just 20 ms, contains an animal. ERP analysis revealed a frontal negativity specific to no-go trials that develops roughly 150 ms after stimulus onset. We conclude that the visual processing needed to perform this highly demanding task can be achieved in under 150 ms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The distinct modes of vision offered by feedforward and recurrent processing.

            An analysis of response latencies shows that when an image is presented to the visual system, neuronal activity is rapidly routed to a large number of visual areas. However, the activity of cortical neurons is not determined by this feedforward sweep alone. Horizontal connections within areas, and higher areas providing feedback, result in dynamic changes in tuning. The differences between feedforward and recurrent processing could prove pivotal in understanding the distinctions between attentive and pre-attentive vision as well as between conscious and unconscious vision. The feedforward sweep rapidly groups feature constellations that are hardwired in the visual brain, yet is probably incapable of yielding visual awareness; in many cases, recurrent processing is necessary before the features of an object are attentively grouped and the stimulus can enter consciousness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How does the brain solve visual object recognition?

              Mounting evidence suggests that 'core object recognition,' the ability to rapidly recognize objects despite substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However, the algorithm that produces this solution remains poorly understood. Here we review evidence ranging from individual neurons and neuronal populations to behavior and computational models. We propose that understanding this algorithm will require using neuronal and psychophysical data to sift through many computational models, each based on building blocks of small, canonical subnetworks with a common functional goal. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                01 April 2013
                2013
                : 4
                : 124
                Affiliations
                [1] 1Department of Psychology and Neuroscience, University of Colorado Boulder Boulder, CO, USA
                [2] 2eCortex, Inc. Boulder, CO, USA
                Author notes

                Edited by: Michael J. Tarr, Carnegie Mellon University, USA

                Reviewed by: Rosemary A. Cowell, University of California San Diego, USA; Maximilian Riesenhuber, Georgetown University Medical Center, USA

                *Correspondence: Randall C. O’Reilly and Dean Wyatte, Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA. e-mail: randy.oreilly@ 123456colorado.edu ; dean.wyatte@ 123456colorado.edu

                Randall C. O’Reilly and Dean Wyatte have contributed equally to this work.

                This article was submitted to Frontiers in Perception Science, a specialty of Frontiers in Psychology.

                Article
                10.3389/fpsyg.2013.00124
                3612699
                23554596
                bbacba40-3086-4b58-86b5-8682d0a4ea96
                Copyright © 2013 O’Reilly, Wyatte, Herd, Mingus and Jilk.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 27 August 2012
                : 26 February 2013
                Page count
                Figures: 6, Tables: 0, Equations: 2, References: 104, Pages: 14, Words: 11903
                Categories
                Psychology
                Original Research

                Clinical Psychology & Psychiatry
                object recognition,computational model,recurrent processing,feedback,winners-take-all mechanism

                Comments

                Comment on this article