20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Structure-Stability Relationship in Proteins: Fundamental Tasks and Strategy for the Development of Stabilized Enzyme Catalysts for Biotechnolog

      , , ,
      Critical Reviews in Biochemistry
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The problem of relationships between the protein structure and its stability comprises two major questions. First, how to elucidate the peculiarities of the protein structure responsible for its stability. Second, knowing the general molecular basis of protein stability, how to change the structure of a given protein in order to increase its stability. This review is an attempt to show the modern state of the first (fundamental) and the second (applied) aspects of the problem.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          The Fluid Mosaic Model of the Structure of Cell Membranes

          A fluid mosaic model is presented for the gross organization and structure of the proteins and lipids of biological membranes. The model is consistent with the restrictions imposed by thermodynamics. In this model, the proteins that are integral to the membrane are a heterogeneous set of globular molecules, each arranged in an amphipathic structure, that is, with the ionic and highly polar groups protruding from the membrane into the aqueous phase, and the nonpolar groups largely buried in the hydrophobic interior of the membrane. These globular molecules are partially embedded in a matrix of phospholipid. The bulk of the phospholipid is organized as a discontinuous, fluid bilayer, although a small fraction of the lipid may interact specifically with the membrane proteins. The fluid mosaic structure is therefore formally analogous to a two-dimensional oriented solution of integral proteins (or lipoproteins) in the viscous phospholipid bilayer solvent. Recent experiments with a wide variety of techniqes and several different membrane systems are described, all of which abet consistent with, and add much detail to, the fluid mosaic model. It therefore seems appropriate to suggest possible mechanisms for various membrane functions and membrane-mediated phenomena in the light of the model. As examples, experimentally testable mechanisms are suggested for cell surface changes in malignant transformation, and for cooperative effects exhibited in the interactions of membranes with some specific ligands. Note added in proof: Since this article was written, we have obtained electron microscopic evidence (69) that the concanavalin A binding sites on the membranes of SV40 virus-transformed mouse fibroblasts (3T3 cells) are more clustered than the sites on the membranes of normal cells, as predicted by the hypothesis represented in Fig. 7B. T-here has also appeared a study by Taylor et al. (70) showing the remarkable effects produced on lymphocytes by the addition of antibodies directed to their surface immunoglobulin molecules. The antibodies induce a redistribution and pinocytosis of these surface immunoglobulins, so that within about 30 minutes at 37 degrees C the surface immunoglobulins are completely swept out of the membrane. These effects do not occur, however, if the bivalent antibodies are replaced by their univalent Fab fragments or if the antibody experiments are carried out at 0 degrees C instead of 37 degrees C. These and related results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglobulin molecules are free to diffuse in the membrane. This aggregation then appears to trigger off the pinocytosis of the membrane components by some unknown mechanism. Such membrane transformations may be of crucial importance in the induction of an antibody response to an antigen, as well as iv other processes of cell differentiation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Areas, volumes, packing and protein structure.

            F Richards (1977)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aromatic-aromatic interaction: a mechanism of protein structure stabilization.

              Analysis of neighboring aromatic groups in four biphenyl peptides or peptide analogs and 34 proteins reveals a specific aromatic-aromatic interaction. Aromatic pairs (less than 7 A between phenyl ring centroids) were analyzed for the frequency of pair type, their interaction geometry (separation and dihedral angle), their nonbonded interaction energy, the secondary structural locations of interacting residues, their environment, and their conservation in related molecules. The results indicate that on average about 60 percent of aromatic side chains in proteins are involved in aromatic pairs, 80 percent of which form networks of three or more interacting aromatic side chains. Phenyl ring centroids are separated by a preferential distance of between 4.5 and 7 A, and dihedral angles approaching 90 degrees are most common. Nonbonded potential energy calculations indicate that a typical aromatic-aromatic interaction has energy of between -1 and -2 kilocalories per mole. The free energy contribution of the interaction depends on the environment of the aromatic pair. Buried or partially buried pairs constitute 80 percent of the surveyed sample and contribute a free energy of between -0.6 and -1.3 kilocalories per mole to the stability of the protein's structure at physiologic temperature. Of the proteins surveyed, 80 percent of these energetically favorable interactions stabilize tertiary structure, and 20 percent stabilize quaternary structure. Conservation of the interaction in related molecules is particularly striking.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Biochemistry
                Critical Reviews in Biochemistry
                Informa UK Limited
                1040-8355
                September 26 2008
                January 1988
                September 26 2008
                January 1988
                : 23
                : 3
                : 235-281
                Article
                10.3109/10409238809088225
                3069328
                bbe95c8b-6d7f-4956-96ee-865839429024
                © 1988
                History

                Comments

                Comment on this article