9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Thermomechanical response of thermoelectrics

      , ,
      Applied Physics Letters
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex thermoelectric materials.

            Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              VESTA: a three-dimensional visualization system for electronic and structural analysis

              A cross-platform program,VESTA, has been developed to visualize both structural and volumetric data in multiple windows with tabs.VESTArepresents crystal structures by ball-and-stick, space-filling, polyhedral, wireframe, stick, dot-surface and thermal-ellipsoid models. A variety of crystal-chemical information is extractable from fractional coordinates, occupancies and oxidation states of sites. Volumetric data such as electron and nuclear densities, Patterson functions, and wavefunctions are displayed as isosurfaces, bird's-eye views and two-dimensional maps. Isosurfaces can be colored according to other physical quantities. Translucent isosurfaces and/or slices can be overlapped with a structural model. Collaboration with external programs enables the user to locate bonds and bond angles in the `graphics area', simulate powder diffraction patterns, and calculate site potentials and Madelung energies. Electron densities determined experimentally are convertible into their Laplacians and electronic energy densities.
                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                November 28 2016
                November 28 2016
                : 109
                : 22
                : 223903
                Article
                10.1063/1.4971387
                bbfeca04-da98-481e-a177-3a3ebeca38fc
                © 2016
                History

                Comments

                Comment on this article