50
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metagenomic Analysis of Taxa Associated with Lutzomyia longipalpis, Vector of Visceral Leishmaniasis, Using an Unbiased High-Throughput Approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Leishmaniasis is one of the most diverse and complex of all vector-borne diseases worldwide. It is caused by parasites of the genus Leishmania, obligate intramacrophage protists characterised by diversity and complexity. Its most severe form is visceral leishmaniasis (VL), a systemic disease that is fatal if left untreated. In Latin America VL is caused by Leishmania infantum chagasi and transmitted by Lutzomyia longipalpis. This phlebotomine sandfly is only found in the New World, from Mexico to Argentina. In South America, migration and urbanisation have largely contributed to the increase of VL as a public health problem. Moreover, the first VL outbreak was recently reported in Argentina, which has already caused 7 deaths and 83 reported cases.

          Methodology/Principal Findings

          An inventory of the microbiota associated with insect vectors, especially of wild specimens, would aid in the development of novel strategies for controlling insect vectors. Given the recent VL outbreak in Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL location. Previous studies on wild and laboratory reared female Lu. longipalpis have described gut bacteria using standard bacteriological methods. In this study, total RNA was extracted from the insects and submitted to high-throughput pyrosequencing. The analysis revealed the presence of sequences from bacteria, fungi, protist parasites, plants and metazoans.

          Conclusions/Significance

          This is the first time an unbiased and comprehensive metagenomic approach has been used to survey taxa associated with an infectious disease vector. The identification of gregarines suggested they are a possible efficient control method under natural conditions. Ongoing studies are determining the significance of the associated taxa found in this study in a greater number of adult male and female Lu. longipalpis samples from endemic and non-endemic locations. A particular emphasis is being given to those species involved in the biological control of this vector and to the etiologic agents of animal and plant diseases.

          Author Summary

          Leishmaniasis is a vector-borne disease with a complex ecology and epidemiology. It has three main clinical forms of which visceral leishmaniasis (VL) is the most severe, as it is fatal if untreated. It is caused by a protist parasite, Leishmania spp., and is transmitted to humans by phlebotomine sandflies. The best method to interrupt any vector-borne disease is to reduce man-vector contact. Vector-targeted strategies are particularly attractive because the vectorial capacity to transmit infectious diseases to humans is proportional to vector density and, in an exponential way, to vector survival. Biological control is an effective means of reducing or mitigating pests through the use of natural enemies and is more environmentally friendly than traditional insecticide treatments. Nevertheless, there is very scanty information on the biological control of sandflies and their potential control agents. In this context, a detailed knowledge of the microorganisms that are associated with these vectors would aid in the development of novel strategies for controlling them. This is the first study to survey the taxa associated with leishmaniasis vectors and, more importantly, with any infectious disease vector, using an unbiased and high-throughput approach.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).

          Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent 'tissue-specific' isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central 'core' of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metagenomics: application of genomics to uncultured microorganisms.

            Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na(+)(Li(+))/H(+) antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gut bacteria of insects: nonpathogenic interactions.

              The diversity of the Insecta is reflected in the large and varied microbial communities inhabiting the gut. Studies, particularly with termites and cockroaches, have focused on the nutritional contributions of gut bacteria in insects living on suboptimal diets. The indigenous gut bacteria, however, also play a role in withstanding the colonization of the gut by non-indigenous species including pathogens. Gut bacterial consortia adapt by the transfer of plasmids and transconjugation between bacterial strains, and some insect species provide ideal conditions for bacterial conjugation, which suggests that the gut is a "hot spot" for gene transfer. Genomic analysis provides new avenues for the study of the gut microbial community and will reveal the molecular foundations of the relationships between the insect and its microbiome. In this review the intestinal bacteria is discussed in the context of developing our understanding of symbiotic relationships, of multitrophic interactions between insects and plant or animal host, and in developing new strategies for controlling insect pests.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                September 2011
                6 September 2011
                : 5
                : 9
                : e1304
                Affiliations
                [1 ]Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, Florencio Varela, Buenos Aires, Argentina
                [2 ]Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Buenos Aires, Argentina
                IRD/CIRDES, Burkina Faso
                Author notes

                Conceived and designed the experiments: CBM. Performed the experiments: CBM. Analyzed the data: CBM. Contributed reagents/materials/analysis tools: CBM LAD RVRP. Wrote the paper: CBM. Developed the custom applications used in the analysis: LAD. Critically revised the manuscript: LAD RVRP.

                Article
                PNTD-D-11-00331
                10.1371/journal.pntd.0001304
                3167787
                21909446
                bcdeb896-a6bc-4613-aec3-fe2afb4a1a7e
                McCarthy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 March 2011
                : 22 July 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Ecology
                Biota
                Environmental Protection
                Genomics
                Metagenomics
                Microbiology
                Vector Biology
                Medicine
                Infectious Diseases
                Neglected Tropical Diseases
                Leishmaniasis
                Infectious Disease Control
                Vectors and Hosts

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article