9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wistar rats were nose-only exposed to multiwalled carbon nanotubes (MWCNT, Baytubes) in a subchronic 13-week inhalation study. The focus of study was on respiratory tract and systemic toxicity, including analysis of MWCNT biokinetics in the lungs and lung-associated lymph nodes (LALNs). The time course and concentration dependence of pulmonary effects were examined by bronchoalveolar lavage (BAL) and histopathology up to 6 months postexposure. Particular emphasis was directed to the comparative characterization of MWCNT structures prior to and after micronization and dry powder dispersion into inhalation chambers. These determinations were complemented by additional analyses in digested BAL cells. Animals were exposed on 6 h/day, 5 days per week for 13 consecutive weeks to 0, 0.1, 0.4, 1.5, and 6 mg/m(3). The subchronic exposure to respirable solid aerosols of MWCNT was tolerated without effects suggestive of systemic toxicity. Kinetic analyses demonstrated a markedly delayed clearance of MWCNT from lungs at overload conditions. Translocation into LALNs occurred at 1.5 and 6 mg/m(3) and required at least 13 weeks of study to become detectable. At these exposure levels, the lung and LALN weights were significantly increased. Sustained elevations in BAL polymorphonuclear neutrophils and soluble collagen occurred at these concentrations with borderline effects at 0.4 mg/m(3). Histopathology revealed principal exposure-related lesions at 0.4 mg/m(3) and above in the upper respiratory tract (goblet cell hyper- and/or metaplasia, eosinophilic globules, and focal turbinate remodeling) and the lower respiratory tract (inflammatory changes in the bronchioloalveolar region and increased interstitial collagen staining). Granulomatous changes and a time-dependent increase of a bronchioloalveolar hyperplasia occurred at 6 mg/m(3). All end points examined were unremarkable at 0.1 mg/m(3) (no-observed-adverse-effect-level). In summary, this study demonstrates that the induced pathological changes are consistent with overload-related phenomena. Hence, the etiopathological sequence of inflammatory events caused by this type of MWCNT appears to be related to the high displacement volume of the low-density MWCNT assemblage structure rather than to any yet ill-defined intrinsic toxic property. Thus, the hypothesis of study is verified, namely, common denominators between carbon black and MWCNT do exist.

          Related collections

          Author and article information

          Journal
          Toxicol Sci
          Toxicological sciences : an official journal of the Society of Toxicology
          Oxford University Press (OUP)
          1096-0929
          1096-0929
          Jan 2010
          : 113
          : 1
          Affiliations
          [1 ] Department of Inhalation Toxicology, Institute of Toxicology, Bayer Schering Pharma, Building Number 514, 42096 Wuppertal, Germany. juergen.pauluhn@bayerhealthcare.com
          Article
          kfp247
          10.1093/toxsci/kfp247
          19822600
          bcdf8390-a0ca-4733-b5a5-b0c771ca93cc
          History

          Comments

          Comment on this article