68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Basis for Defining the Pineal Gland and Pinealocytes as Targets for Tumor Necrosis Factor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pineal gland, the gland that translates darkness into an endocrine signal by releasing melatonin at night, is now considered a key player in the mounting of an innate immune response. Tumor necrosis factor (TNF), the first pro-inflammatory cytokine to be released by an inflammatory response, suppresses the translation of the key enzyme of melatonin synthesis (arylalkylamine- N-acetyltransferase, Aanat). Here, we show that TNF receptors of the subtype 1 (TNF-R1) are expressed by astrocytes, microglia, and pinealocytes. We also show that the TNF signaling reduces the level of inhibitory nuclear factor kappa B protein subtype A (NFKBIA), leading to the nuclear translocation of two NFKB dimers, p50/p50, and p50/RelA. The lack of a transactivating domain in the p50/p50 dimer suggests that this dimer is responsible for the repression of Aanat transcription. Meanwhile, p50/RelA promotes the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide, which inhibits adrenergically induced melatonin production. Together, these data provide a mechanistic basis for considering pinealocytes a target of TNF and reinforce the idea that the suppression of pineal melatonin is one of the mechanisms involved in mounting an innate immune response.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

          The role of tumor necrosis factor (TNF) as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1) is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF) or transmembrane TNF (tmTNF), with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD), Parkinson's (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NF-kappa B: a crucial transcription factor for glial and neuronal cell function.

            Transcription factors provide the link between early membrane-proximal signalling events and changes in gene expression. NF-kappa B is one of the best-characterized transcription factors. It is expressed ubiquitously and regulates the expression of many genes, most of which encode proteins that play an important and often determining role in the processes of immunity and inflammation. Apart from its role in these events, evidence has begun to accumulate that NF-kappa B is involved in brain function, particularly following injury and in neurodegenerative conditions such as Alzheimer's disease. NF-kappa B might also be important for viral replication in the CNS. An involvement of NF-kappa B in neuronal development is suggested from studies that demonstrate its activation in neurones in certain regions of the brain during neurogenesis. Brain-specific activators of NF-kappa B include glutamate (via both AMPA/KA and NMDA receptors) and neurotrophins, pointing to an involvement in synaptic plasticity. NF-kappa B can therefore be considered as one of the most important transcription factors characterized in brain to date and it might be as crucial for neuronal and glial cell function as it is for immune cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness.

              Melatonin is a molecule present in a multitude of taxa and may be ubiquitous in organisms. It has been found in bacteria, unicellular eukaryotes, macroalgae, fungi, plants and animals. A primary biological function of melatonin in primitive unicellular organisms is in antioxidant defence to protect against toxic free radical damage. During evolution, melatonin has been adopted by multicellular organisms to perform many other biological functions. These functions likely include the chemical expression of darkness in vertebrates, environmental tolerance in fungi and plants, sexual signaling in birds and fish, seasonal reproductive regulation in photoperiodic mammals, and immunomodulation and anti-inflammatory activity in all vertebrates tested. Moreover, its waning production during aging may indicate senescence in terms of a bio-clock in many organisms. Conversely, high melatonin levels can serve as a signal of vitality and health. The multiple biological functions of melatonin can partially be attributed to its unconventional metabolism which is comprised of multi-enzymatic, pseudo-enzymatic and non-enzymatic pathways. As a result, several bioactive metabolites of melatonin are formed during its metabolism and some of the presumed biological functions of melatonin reported to date may, in fact, be mediated by these metabolites. The changing biological roles of melatonin seem to have evolved from its primary function as an antioxidant.
                Bookmark

                Author and article information

                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrin.
                Frontiers in Endocrinology
                Frontiers Research Foundation
                1664-2392
                13 May 2011
                2011
                : 2
                : 10
                Affiliations
                [1] 1simpleLaboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, Universidade de São Paulo São Paulo, Brazil
                [2] 2simpleDepartment of Speech, Language and Hearing Therapy, Universidade Estadual Paulista Marília, Brazil
                Author notes

                Edited by: Steven M. Hill, Tulane University School of Medicine, USA

                Reviewed by: Roman L. Bogorad, Massachusetts Institute of Technology, USA; Massimiliano Beltramo, Institut National de la Recherche Agronomique, France

                *Correspondence: Regina P. Markus, Laboratory of Chronopharmacology, Institute of Bioscience, Universidade de São Paulo, Rua do Matão, Travessa 14, 05508-900 São Paulo, Brazil. e-mail: rpmarkus@ 123456usp.br

                This article was submitted to Frontiers in Cellular Endocrinology, a aspecialty of Frontiers in Endocrinology.

                Article
                10.3389/fendo.2011.00010
                3356111
                22654792
                bce17941-8267-48ea-9043-becf1ddef26d
                Copyright © 2011 Carvalho-Sousa, da Silveira Cruz-Machado, Tamura, Fernandes, Pinato, Muxel, Cecon and Markus.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 06 December 2010
                : 27 April 2011
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 61, Pages: 11, Words: 7659
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                nuclear factor kappa b,immune-pineal axis,pineal gland,melatonin,tumor necrosis factor

                Comments

                Comment on this article