34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection

      review-article
      , *
      Applied & Translational Genomics
      Elsevier
      CCR5, HIV, Δ32, Therapeutics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When HIV was initially discovered as the causative agent of AIDS, many expected to find a vaccine within a few years. This has however proven to be elusive; it has been approximately 30 years since HIV was first discovered, and a suitable vaccine is still not in effect. In 2009, a paper published by Hutter et al. reported on a bone marrow transplant performed on an HIV positive individual using stem cells that were derived from a donor who was homozygous for a mutation in the CCR5 gene known as CCR5 delta-32 (Δ32) ( Hütter et al., 2009). The HIV positive individual became HIV negative and remained free of viral detection after transplantation despite having halted anti-retroviral (ARV) treatment. This review will focus on CCR5 as a key component in HIV immunity and will discuss the role of CCR5 in the control of HIV infection.

          Highlights

          • Overview of the CCR5 receptor, gene and protein structure

          • The role of CCR5 in HIV infection and progression

          • CCR5 gene mutations affecting HIV including detail on South African mutations

          • Details of the CCR5 Δ32 mutation

          • Current therapeutic applications of CCR5 for HIV

          Related collections

          Most cited references172

          • Record: found
          • Abstract: found
          • Article: not found

          HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor.

          A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy. This protein, designated "fusin," is a putative G protein-coupled receptor with seven transmembrane segments. Recombinant fusin enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and HIV-1 infection. Antibodies to fusin blocked cell fusion and infection with normal CD4-positive human target cells. Fusin messenger RNA levels correlated with HIV-1 permissiveness in diverse human cell types. Fusin acted preferentially for T cell line-tropic isolates, in comparison to its activity with macrophagetropic HIV-1 isolates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction.

            CD8+ T cells have a crucial role in resistance to pathogens and can kill malignant cells; however, some critical functions of these lymphocytes depend on helper activity provided by a distinct population of CD4+ T cells. Cooperation between these lymphocyte subsets involves recognition of antigens co-presented by the same dendritic cell, but the frequencies of such antigen-bearing cells early in an infection and of the relevant naive T cells are both low. This suggests that an active mechanism facilitates the necessary cell-cell associations. Here we demonstrate that after immunization but before antigen recognition, naive CD8+ T cells in immunogen-draining lymph nodes upregulate the chemokine receptor CCR5, permitting these cells to be attracted to sites of antigen-specific dendritic cell-CD4+ T cell interaction where the cognate chemokines CCL3 and CCL4 (also known as MIP-1alpha and MIP-1beta) are produced. Interference with this actively guided recruitment markedly reduces the ability of CD4+ T cells to promote memory CD8+ T-cell generation, indicating that an orchestrated series of differentiation events drives nonrandom cell-cell interactions within lymph nodes, optimizing CD8+ T-cell immune responses involving the few antigen-specific precursors present in the naive repertoire.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study.

              The chemokine receptor 5 (CKR5) protein serves as a secondary receptor on CD4(+) T lymphocytes for certain strains of human immunodeficiency virus-type 1 (HIV-1). The CKR5 structural gene was mapped to human chromosome 3p21, and a 32-base pair deletion allele (CKR5Delta32) was identified that is present at a frequency of approximately0.10 in the Caucasian population of the United States. An examination of 1955 patients included among six well-characterized acquired immunodeficiency syndrome (AIDS) cohort studies revealed that 17 deletion homozygotes occurred exclusively among 612 exposed HIV-1 antibody-negative individuals (2.8 percent) and not at all in 1343 HIV-1-infected individuals. The frequency of CKR5 deletion heterozygotes was significantly elevated in groups of individuals that had survived HIV-1 infection for more than 10 years, and, in some risk groups, twice as frequent as their occurrence in rapid progressors to AIDS. Survival analysis clearly shows that disease progression is slower in CKR5 deletion heterozygotes than in individuals homozygous for the normal CKR5 gene. The CKR5Delta32 deletion may act as a recessive restriction gene against HIV-1 infection and may exert a dominant phenotype of delaying progression to AIDS among infected individuals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Appl Transl Genom
                Appl Transl Genom
                Applied & Translational Genomics
                Elsevier
                2212-0661
                26 May 2013
                01 December 2013
                26 May 2013
                : 2
                : 3-16
                Affiliations
                Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
                Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
                Author notes
                [* ]Corresponding author at: Dept. of Immunology, Faculty of Health Sciences, University of Pretoria, P.O. Box 2034, Pretoria 0001, South Africa. Tel.: + 27 12 319 2190; fax: + 27 12 319 2946. michael.pepper@ 123456up.ac.za
                Article
                S2212-0661(13)00008-2
                10.1016/j.atg.2013.05.004
                5133339
                27942440
                bd1ef370-9844-4964-9743-114d14f59401
                © 2013 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                : 5 December 2012
                : 19 May 2013
                : 21 May 2013
                Categories
                Review

                ccr5,hiv,δ32,therapeutics
                ccr5, hiv, δ32, therapeutics

                Comments

                Comment on this article