Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Commissioning, clinical implementation, and performance of the Mobetron 2000 for intraoperative radiation therapy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Mobetron is a mobile electron accelerator designed to deliver therapeutic radiation dose intraoperatively while diseased tissue is exposed. Experience with the Mobetron 1000 has been reported extensively. However, since the time of those publications a new model, the Mobetron 2000, has become commercially available. Experience commissioning this new model and 3 years of data from historical use are reported here. Descriptions of differences between the models are emphasized, both in physical form and in dosimetric characteristics. Results from commissioning measurements including output factors, air gap factors, percent depth doses (PDDs), and 2D dose profiles are reported. Output factors are found to have changed considerably in the new model, with factors as high as 1.7 being measured. An example lookup table of appropriate accessory/energy combinations for a given target dimension is presented, and the method used to generate it described. Results from 3 years of daily QA measurements are outlined. Finally, practical considerations garnered from 3 years of use are presented.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Multichannel film dosimetry with nonuniformity correction.

          A new method to evaluate radiochromic film dosimetry data scanned in multiple color channels is presented. This work was undertaken to demonstrate that the multichannel method is fundamentally superior to the traditional single channel method. The multichannel method allows for the separation and removal of the nondose-dependent portions of a film image leaving a residual image that is dependent only on absorbed dose. Radiochromic films were exposed to 10 x 10 cm radiation fields (Co-60 and 6 MV) at doses up to about 300 cGy. The films were scanned in red-blue-green (RGB) format on a flatbed color scanner and measured to build calibration tables relating the absorbed dose to the response of the film in each of the color channels. Film images were converted to dose maps using two methods. The first method used the response from a single color channel and the second method used the response from all three color channels. The multichannel method allows for the separation of the scanned signal into one part that is dose-dependent and another part that is dose-independent and enables the correction of a variety of disturbances in the digitized image including nonuniformities in the active coating on the radiochromic film as well as scanner related artifacts. The fundamental mathematics of the two methods is described and the dose maps calculated from film images using the two methods are compared and analyzed. The multichannel dosimetry method was shown to be an effective way to separate out non-dose-dependent abnormalities from radiochromic dosimetry film images. The process was shown to remove disturbances in the scanned images caused by nonhomogeneity of the radiochromic film and artifacts caused by the scanner and to improve the integrity of the dose information. Multichannel dosimetry also reduces random noise in the dose images and mitigates scanner-related artifacts such as lateral position dependence. In providing an ability to calculate dose maps from data in all the color channels the multichannel method provides the ability to examine the agreement between the color channels. Furthermore, when using calibration data to convert RGB film images to dose using the new method, poor correspondence between the dose calculations for the three color channels provides an important indication that the this new technique enables easy indication in case the dose and calibration films are curve mismatched. The method permit compensation for thickness nonuniformities in the film, increases the signal to noise level, mitigates the lateral dose-dependency of flatbed scanners effect of the calculated dose map and extends the evaluable dose range to 10 cGy-100 Gy. Multichannel dosimetry with radiochromic film like Gafchromic EBT2 is shown to have significant advantages over single channel dosimetry. It is recommended that the dosimetry protocols described be implemented when using this radiochromic film to ensure the best data integrity and dosimetric accuracy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IORT with electrons as boost strategy during breast conserving therapy in limited stage breast cancer: long term results of an ISIORT pooled analysis.

            Linac-based intraoperative radiotherapy with electrons (IOERT) was implemented to prevent local recurrences after breast conserving therapy (BCT) and was delivered as an intraoperative boost to the tumor bed prior to whole breast radiotherapy (WBI). A collaborative analysis has been performed by European ISIORT member institutions for long term evaluation of this strategy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM Radiation Therapy Committee Task Group No. 72.

              Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.
                Bookmark

                Author and article information

                Contributors
                markp@uw.edu
                Journal
                J Appl Clin Med Phys
                J Appl Clin Med Phys
                10.1002/(ISSN)1526-9914
                ACM2
                Journal of Applied Clinical Medical Physics
                John Wiley and Sons Inc. (Hoboken )
                1526-9914
                19 January 2017
                January 2017
                : 18
                : 1 ( doiID: 10.1002/acm2.2017.18.issue-1 )
                : 230-242
                Affiliations
                [ 1 ] Department of Radiation Oncology University of Washington School of Medicine Seattle WA USA
                Author notes
                [*] [* ] Author to whom correspondence should be addressed. Mark Phillips

                E‐mail: markp@ 123456uw.edu ;

                Telephone: +1 (206) 598 6219.

                Article
                ACM212027
                10.1002/acm2.12027
                5689882
                28291922
                bd34dc42-4394-409a-90a9-3c103bd084b8
                © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 August 2016
                : 17 November 2016
                Page count
                Figures: 15, Tables: 5, Pages: 13, Words: 8028
                Categories
                87.56.bd
                87.55.de
                87.55.Qr
                Radiation Oncology Physics
                Radiation Oncology Physics
                Custom metadata
                2.0
                acm212027
                January 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.5 mode:remove_FC converted:16.11.2017

                commissioning,intraoperative,iort,mobetron,mobile accelerator

                Comments

                Comment on this article