11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adipose differentiation-related protein knockdown inhibits vascular smooth muscle cell proliferation and migration and attenuates neointima formation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular smooth muscle cells (VSMCs) have an important role in atherosclerosis development. Evidence has demonstrated that adipose differentiation-related protein (ADRP) is associated with foam cell formation and atherosclerosis progression. However, to the best of our knowledge, no previous studies have investigated the role of ADRP knockdown in platelet-derived growth factor (PDGF)-stimulated proliferation and migration of VSMCs in vitro. Furthermore, the effect of ADRP knockdown on neointima formation in vivo remains unclear. In the present study, primary human aortic VSMCs were incubated with PDGF following ADRP small interfering (si)RNA transfection. Cell viability, migration and cell cycle distribution were analyzed by MTT, wound healing and Transwell assays and flow cytometry, respectively. Extracellular signal-regulated kinase (ERK), phosphorylated (p)-ERK, Akt, p-Akt, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP)-2 and MMP-9 protein levels were determined by western blotting. Apolipoprotein E −/− mice fed an atherogenic diet were injected with siADRP or control siRNA twice a week. After 3 weeks of therapy, aortas were excised and ADRP mRNA and protein expression was determined. Neointima formation was assessed by hematoxylin and eosin staining. The results of the current study demonstrated that ADRP knockdown significantly inhibited PDGF-induced increases in VSMC viability, caused G1 phase cell cycle arrest and decreased PCNA expression. Knockdown of ADRP inhibited PDGF-induced migration of VSMCs by reducing MMP protein expression and activity. In addition, the present study also demonstrated that ADRP knockdown inhibited ERK and Akt signaling pathways in response to PDGF. Furthermore, siADRP administration suppressed neointima formation in the mouse model. The results of the present study indicate that ADRP may be a potential target for the treatment of atherosclerosis.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis.

          Atherosclerosis is the leading cause of death and disability. The lesions of atherosclerosis represent a series of highly specific cellular and molecular responses. The earliest changes that precede the formation of lesions of atherosclerosis take place in the endothelium (EC), with resultant endothelial dysfunction. The EC-induced injury can result in increased lipid permeability, macrophage recruitment, formation of foam cells, and recruitment of T-lymphocytes and platelet. After intimal injury, different cell types,including ECs, platelets, and inflammatory cells release mediators, such as growth factors and cytokines that induce multiple effects including phenotype change of vascular smooth muscle cells (VSMC) from the quiescent "contractile" phenotype state to the active "synthetic" state, that can migrate and proliferate from media to the intima. The inflammatory response simulates migration and proliferation of VSMC that become intermixed with the area of inflammation to form an intermediate lesion. These responses continue uninhibited and is accompanied by accumulation of new extra cellular matrix (ECM). The migratory and proliferative activities of VSMC are regulated by growth promoters such as platelet derived growth factors (PGF), endothelin-1 (ET-1), thrombin, fibroblast growth factor (FGF), interleukin-1 (IL-1) and inhibitors such as, heparin sulfates , nitric oxide (NO), transforming growth factor (TGF)-beta. The matrix metallo proteinases (MMPs) could also participate in the process of VSMC migration. MMPs could catalyze and remove the basement membrane around VSMC and facilitate contacts with the interstitial matrix. This could promote a change from quiescent, contractile VSMC to cells capable of migrating and proliferating to mediate repair. The VSMC regulation is a very complex process, VSMC are stimulated to proliferate and migrate by some kind of cytokines, growth factors, angiotensin II (Ang-II). Together with apoptosis, proliferation and migration of VSMC are vital to the pathogenesis of atherosclerosis and plaque rupture. Rupture of the plaque is associated with increased fibrous cap macrophage, increased VSMC apoptosis, and reduced fibrous cap VSMC. VSMC are the only cells with plaques capable of synthesizing structurally important collagen isoforms, and the apoptosis of VSMC might promote plaque rupture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis.

            Foam cells are a hallmark of atherosclerosis. However, it is unclear whether foam cell formation per se protects against atherosclerosis or fuels it. In this study, we investigated the role of adipose differentiation-related protein (ADFP), a major lipid droplet protein (LDP), in the regulation of foam cell formation and atherosclerosis. We show that ADFP expression facilitates foam cell formation induced by modified lipoproteins in mouse macrophages in vitro. We show further that Adfp gene inactivation in apolipoprotein E-deficient (ApoE(-/-)) mice reduces the number of lipid droplets in foam cells in atherosclerotic lesions and protects the mice against atherosclerosis. Moreover, transplantation of ADFP-null bone marrow-derived cells effectively attenuated atherosclerosis in ApoE(-/-) mice. Deficiency of ADFP did not cause a detectable compensatory increase in the other PAT domain proteins in macrophages in vitro or in vivo. Mechanistically, ADFP enables the macrophage to maintain its lipid content by hindering lipid efflux. We detected no significant difference in lesion composition or in multiple parameters of inflammation in macrophages or in their phagocytic activity between mice with and without ADFP. In conclusion, Adfp inactivation in ApoE(-/-) background protects against atherosclerosis and appears to be a relatively pure model of impaired foam cell formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tocopherols in the Prevention and Treatment of Atherosclerosis and Related Cardiovascular Disease.

              Oxidants/antioxidants play an important role in cellular homeostasis. The human body has endogenous molecules that work as antioxidants, such as glutathione, superoxide dismutase, peroxidases, and catalase. Exogenous substances in the diet, such as β-carotene, ascorbate, and vitamin E, are vital antioxidants. Of these, vitamin E is likely the most important antioxidant in the human diet, and many studies have been performed to elucidate its role in health and disease. Vitamin E is a family of several compounds, of which α-tocopherol is the most widely known analog. α-Tocopherol exhibits antioxidative property in vitro and inhibits oxidation of low-density lipoprotein cholesterol. In addition, α-tocopherol shows anti-inflammatory activity and modulates expression of proteins involved in the uptake, transport, and degradation of atherogenic lipids. Though α-tocopherol exhibits important antioxidant, anti-inflammatory, and antiatherogenic features in vitro, α-tocopherol supplements have failed to consistently reduce atherosclerosis-related events in human trials. The conflicting results have led to reconsideration of the importance previously given to α-tocopherol and led to interest in other members of vitamin E family, especially γ-tocopherol, which exerts a much more potent antioxidant, anti-inflammatory, and cardioprotective effect than α-tocopherol. This reconsideration has been backed by solid laboratory and clinical research. We suggest that the absence of γ-tocopherol in traditional preparations may be one reason for the lack of consistent salutary effects of vitamin E preparations in clinical trials. This review summarizes our current understanding of tocopherols as antioxidant molecules and emerging evidence of an important role of γ-tocopherol in the pathophysiology of atherosclerosis-related cardiovascular disease.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                September 2017
                15 July 2017
                15 July 2017
                : 16
                : 3
                : 3079-3086
                Affiliations
                Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
                Author notes
                Correspondence to: Dr Dajun Sun, Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Avenue, Changchun, Jilin 130033, P.R. China, E-mail: dajunsun_cc@ 123456tom.com
                Article
                mmr-16-03-3079
                10.3892/mmr.2017.6997
                5548019
                28713961
                bd6c0b3b-41b7-48e6-b013-ad515ecc3070
                Copyright: © Zhao et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 23 May 2016
                : 06 April 2017
                Categories
                Articles

                atherosclerosis,vascular smooth muscle cells,adipose differentiation-related protein knockdown,proliferation,migration,apolipoprotein e−/− mice

                Comments

                Comment on this article