14
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Expression of major surface protein 2 antigenic variants during acute Anaplasma marginale rickettsemia.

      Infection and Immunity
      Acute Disease, Amino Acid Sequence, Anaplasma, immunology, Anaplasmosis, Animals, Antigens, Bacterial, analysis, genetics, Antigens, Surface, Bacteremia, Bacterial Proteins, Base Sequence, Cattle, Cloning, Molecular, Molecular Sequence Data, RNA, Messenger

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antigenic variants of Anaplasma marginale major surface protein 2 (MSP-2), a target of protective immune responses, have been detected by use of copy-specific monoclonal antibodies reactive with some, but not all, organisms during acute rickettsemia. The presence of polymorphic msp-2 genes was confirmed by cloning and sequencing two gene copies, 11.2 and DF5, each of which encodes a full-length MSP-2 with a unique amino acid sequence. Transcription of msp-2 genes during acute rickettsemia was analyzed by use of cDNA cloning of hybrid-selected msp-2 mRNA. Sequencing of cDNA clones, designated AR1 to AR14, indicated that DF5 msp-2 was transcribed during acute rickettsemia. Two classes of variant msp-2 genes were also transcribed during acute rickettsemia. The first class of variant transcripts, typified by clones AR3, AR4, AR7, and AR14, each encoded a single or small number of amino acid substitutions relative to DF5. The second type, AR5, encoded a large region of amino acid polymorphism, including additions, deletions, and substitutions, as compared to DF5. Specific antibody directed against the AR5 polymorphic region bound a unique MSP-2 expressed on A. marginale that was not recognized by antibody generated against DF5. Similarly, anti-AR5 peptide antibody reacted with a different MSP-2 that was not bound by anti-DF5 antibody. This expression confirmed that variant msp-2 transcripts encode structurally distinct MSP-2 molecules which bear unique B-cell epitopes. These results support the hypothesis that the large msp-2 gene family, which constitutes a minimum of 1% of the genome, encodes antigenic variants critical to evasion of protective immune response directed against surface MSP-2 epitopes.

          Related collections

          Author and article information

          Comments

          Comment on this article