115
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Responses of Pseudomonas aeruginosa to antimicrobials

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosa in vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful clues for the improvement and optimization of chemotherapy in order to appropriately treat pseudomonal infections while minimizing the emergence of resistance.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Aminoglycoside antibiotics induce bacterial biofilm formation.

          Biofilms are adherent aggregates of bacterial cells that form on biotic and abiotic surfaces, including human tissues. Biofilms resist antibiotic treatment and contribute to bacterial persistence in chronic infections. Hence, the elucidation of the mechanisms by which biofilms are formed may assist in the treatment of chronic infections, such as Pseudomonas aeruginosa in the airways of patients with cystic fibrosis. Here we show that subinhibitory concentrations of aminoglycoside antibiotics induce biofilm formation in P. aeruginosa and Escherichia coli. In P. aeruginosa, a gene, which we designated aminoglycoside response regulator (arr), was essential for this induction and contributed to biofilm-specific aminoglycoside resistance. The arr gene is predicted to encode an inner-membrane phosphodiesterase whose substrate is cyclic di-guanosine monophosphate (c-di-GMP)-a bacterial second messenger that regulates cell surface adhesiveness. We found that membranes from arr mutants had diminished c-di-GMP phosphodiesterase activity, and P. aeruginosa cells with a mutation changing a predicted catalytic residue of Arr were defective in their biofilm response to tobramycin. Furthermore, tobramycin-inducible biofilm formation was inhibited by exogenous GTP, which is known to inhibit c-di-GMP phosphodiesterase activity. Our results demonstrate that biofilm formation can be a specific, defensive reaction to the presence of antibiotics, and indicate that the molecular basis of this response includes alterations in the level of c-di-GMP.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pseudomonas Aeruginosa: Resistance to the Max

            Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotics as intermicrobial signaling agents instead of weapons.

              It has been widely assumed that the ecological function of antibiotics in nature is fighting against competitors. This made them a good example of the Darwinian struggle-for-life in the microbial world. Based on this idea, it also has been believed that antibiotics, even at subinhibitory concentrations, reduce virulence of bacterial pathogens. Herein, using a combination of genomic and functional assays, we demonstrate that specific antibiotics (namely tobramycin, tetracycline, and norfloxacin) at subinhibitory concentrations trigger expression of determinants influencing the virulence of the major opportunistic bacterial pathogen Pseudomonas aeruginosa. All three antibiotics induce biofilm formation; tobramycin increases bacterial motility, and tetracycline triggers expression of P. aeruginosa type III secretion system and consequently bacterial cytotoxicity. Besides their relevance in the infection process, those determinants are relevant for the ecological behavior of this bacterial species in natural, nonclinical environments, either by favoring colonization of surfaces (biofilm, motility) or for fighting against eukaryotic predators (cytotoxicity). Our results support the notion that antibiotics are not only bacterial weapons for fighting competitors but also signaling molecules that may regulate the homeostasis of microbial communities. At low concentrations, they can even be beneficial for the behavior of susceptible bacteria in natural environments. This is a complete change on our vision on the ecological function of antibiotics with clear implications both for the treatment of infectious diseases and for the understanding of the microbial relationships in the biosphere.
                Bookmark

                Author and article information

                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                08 January 2014
                2013
                : 4
                : 422
                Affiliations
                Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya Japan
                Author notes

                Edited by: Joshua D. Nosanchuk, Albert Einstein College of Medicine, USA

                Reviewed by: Antonio Oliver, Hospital Son Dureta, Spain;Yoshimi Matsumoto, Osaka University, Japan

                *Correspondence: Yuji Morita, Department of Microbiology, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa, Nagoya, Aichi 464-8650, Japan e-mail: yujmor@ 123456dpc.agu.ac.jp
                This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology.
                Article
                10.3389/fmicb.2013.00422
                3884212
                24409175
                bd9f14d0-390e-4850-81d9-342ccdf8c5e7
                Copyright © 2014 Morita, Tomida and Kawamura.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 November 2013
                : 24 December 2013
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 74, Pages: 8, Words: 0
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                stress responses,multidrug efflux systems,biofilms,pseudomonas aeruginosa,anti-bacterial agents

                Comments

                Comment on this article