10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atypical pharmacology of schistosome TRPA1-like ion channels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease estimated to affect over 200 million people worldwide. Praziquantel is the only antischistosomal currently available for treatment, and there is an urgent need for new therapeutics. Ion channels play key roles in physiology and are targets for many anthelmintics, yet only a few representatives have been characterized in any detail in schistosomes and other parasitic helminths. The transient receptor potential (TRP) channel superfamily comprises a diverse family of non-selective cation channels that play key roles in sensory transduction and a wide range of other functions. TRP channels fall into several subfamilies. Members of both the TRPA and TRPV subfamilies transduce nociceptive and inflammatory signals in mammals, and often also respond to chemical and thermal signals. We previously showed that although schistosomes contain no genes predicted to encode TRPV channels, TRPV1-selective activators such as capsaicin and resiniferatoxin elicit dramatic hyperactivity in adult worms and schistosomula. Surprisingly, this response requires expression of a S. mansoni TRPA1-like orthologue (SmTRPA). Here, we show that capsaicin induces a rise in intracellular Ca 2+ in mammalian cells expressing either SmTRPA or a S. haematobium TRPA1 orthologue (ShTRPA). We also test SmTRPA and ShTRPA responses to various TRPV1 and TRPA1 modulators. Interestingly, in contrast to SmTRPA, ShTRPA is not activated by the TRPA1 activator AITC (allyl isothiocyanate), nor do S. haematobium adult worms respond to this compound, a potentially intriguing species difference. Notably, 4-hydroxynonenal (4-HNE), a host-derived, inflammatory product that directly activates mammalian TRPA1, also activates both SmTRPA and ShTRPA. Our results point to parasite TRPA1-like channels which exhibit atypical, mixed TRPA1/TRPV1-like pharmacology, and which may also function to transduce endogenous host signals.

          Author summary

          Schistosomes are parasitic flatworms that infect hundreds of millions of people worldwide. They cause schistosomiasis, a disease with major consequences for human health and economic development. There is only a single drug available for treatment and control of this highly prevalent disease, and there is an urgent need for development of new treatments. TRP ion channels play key roles in sensory (and other) functions. One type of TRP channel, TRPV1, is activated by capsaicin, the active ingredient in hot peppers. However, schistosomes do not have any TRPV-like channels. Nonetheless, we previously showed that capsaicin and similar compounds induce dramatic hyperactivity in schistosomes, and that this response is abolished by suppressing expression of SmTRPA, a schistosome TRPA1-like channel. Mammalian TRPA1 channels are not sensitive to capsaicin. Here, we show that the SmTRPA channel itself responds to capsaicin, resulting in an influx of Ca 2+ into cells. ShTRPA, a TRPA1-like channel from another schistosome, S. haematobium, is also sensitive to capsaicin. Thus, the pharmacology of schistosome TRPA1 channels apparently differs from that of host mammalian channels, a characteristic that could indicate mixed TRPA/TRPV functionality and might be exploitable for development of new antischistosomal drugs. Furthermore, we show that schistosome TRPA1-like channels are activated by host-derived compounds, perhaps indicating a mechanism by which the parasite can respond to host signals.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          TRP channels.

          The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global status of schistosomiasis and its control.

            Schistosomiasis is being successfully controlled in many countries but remains a major public health problem, with an estimated 200 million people infected, mostly in Africa. Few countries in this region have undertaken successful and sustainable control programmes. The construction of water schemes to meet the power and agricultural requirements for development have lead to increasing transmission, especially of Schistosoma mansoni. Increasing population and movement have contributed to increased transmission and introduction of schistosomiasis to new areas. Most endemic countries are among the least developed whose health systems face difficulties to provide basic care at the primary health level. Constraints to control include, the lack of political commitment and infrastructure for public health interventions. Another constraint is that available anti-schistosomal drugs are expensive and the cost of individual treatment is a high proportion of the per capita drug budgets. There is need for increased support for schistosomiasis control in the most severely affected countries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures.

              Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: ConceptualizationRole: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: Methodology
                Role: Formal analysisRole: Methodology
                Role: ConceptualizationRole: MethodologyRole: ResourcesRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                10 May 2018
                May 2018
                : 12
                : 5
                : e0006495
                Affiliations
                [001]Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                McGill University, CANADA
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0002-0056-6472
                http://orcid.org/0000-0003-4487-7210
                http://orcid.org/0000-0002-3317-1039
                Article
                PNTD-D-18-00315
                10.1371/journal.pntd.0006495
                5963811
                29746471
                bdb9c8e3-7843-45fc-99ed-ba501ae08ead
                © 2018 Bais et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 February 2018
                : 2 May 2018
                Page count
                Figures: 4, Tables: 0, Pages: 16
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R01AI123173
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R21AI132912
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R56AI125415
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: S10OD021633
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: S10RR027128
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R21AI130665
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: R21AI128059
                Award Recipient :
                This work was funded by National Institutes of Health ( https://www.nih.gov/) grants R01AI123173, R21AI132912, R21AI130665, and R21AI128059 to RMG, and R56AI125415, S10OD021633, and S10RR027128 to BDF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Helminths
                Schistosoma
                Biology and Life Sciences
                Biophysics
                Ion Channels
                Transient Receptor Potential Channels
                Physical Sciences
                Physics
                Biophysics
                Ion Channels
                Transient Receptor Potential Channels
                Biology and Life Sciences
                Physiology
                Electrophysiology
                Ion Channels
                Transient Receptor Potential Channels
                Medicine and Health Sciences
                Physiology
                Electrophysiology
                Ion Channels
                Transient Receptor Potential Channels
                Biology and Life Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Ion Channels
                Transient Receptor Potential Channels
                Medicine and Health Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Ion Channels
                Transient Receptor Potential Channels
                Biology and Life Sciences
                Neuroscience
                Neurophysiology
                Ion Channels
                Transient Receptor Potential Channels
                Biology and Life Sciences
                Biochemistry
                Proteins
                Ion Channels
                Transient Receptor Potential Channels
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Helminths
                Schistosoma
                Schistosoma Mansoni
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Transfection
                Research and Analysis Methods
                Molecular Biology Techniques
                Transfection
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Helminths
                Schistosoma
                Schistosoma Haematobium
                Biology and Life Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Immunology
                Immune Response
                Inflammation
                Medicine and Health Sciences
                Diagnostic Medicine
                Signs and Symptoms
                Inflammation
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Signs and Symptoms
                Inflammation
                Research and analysis methods
                Biological cultures
                Cell lines
                CHO cells
                Medicine and Health Sciences
                Pharmacology
                Custom metadata
                vor-update-to-uncorrected-proof
                2018-05-22
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article