1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Treatment of Severe Acute Bacterial Keratitis in Rabbits Using Continuous Topical Ocular Instillation with Norvancomycin

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Efficacy of norvancomycin (NVCM) through continuous topical ocular instillation drug delivery (CTOIDD) system for treating severe acute bacterial keratitis infection with Staphylococcus aureus was investigated.

          Methods

          Rabbits with bacterial keratitis were treated using CTOIDD with NVCM (n=13), topical NVCM eye drops (n=11), and CTOIDD with saline (n=8). Clinical signs of keratitis in all groups were assessed consecutively for a week. Bacterial quantification of excised corneas was counted on the fourth and eighth days. Histopathologic examinations were performed to assess inflammatory cell infiltration on the eighth day.

          Results

          All signs of bacterial keratitis were alleviated in CTOIDD with NVCM according to criteria, and the CTOIDD-NVCM group had significantly less inflammation than CTOIDD-saline ( p<0.05), and eye drop-NVCM ( p<0.05). Two eyes in the eye drop-NVCM group, four eyes in the CTOIDD-saline group had corneal perforation (CP), while none of the rabbits showed CP in the CTOIDD-NVCM group. Bacterial counts were significantly less in the CTOIDD with NVCM group in comparison to the eye drop-NVCM ( p<0.05), and CTOIDD-saline ( p<0.05) groups. Severe inflammation and marked inflammatory cell infiltration were found in histopathologic examinations in the CTOIDD-saline and eye drop-NVCM groups, while significantly less inflammation was documented in the CTOIDD-NVCM ( p<0.05) group.

          Conclusion

          CTOIDD with NVCM effectively reduced the severity and treated acute bacterial S. aureus keratitis infection in a rabbit model. The presented approach of CTOIDD with NVCM appears to be a promising therapeutic approach for severe acute bacterial keratitis.

          Related collections

          Most cited references 39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives

          Extensive documentation on the antimicrobial properties of essential oils and their constituents has been carried out by several workers. Although the mechanism of action of a few essential oil components has been elucidated in many pioneering works in the past, detailed knowledge of most of the compounds and their mechanism of action is still lacking. This knowledge is particularly important for the determination of the effect of essential oils on different microorganisms, how they work in combination with other antimicrobial compounds, and their interaction with food matrix components. Also, recent studies have demonstrated that nanoparticles (NPs) functionalized with essential oils have significant antimicrobial potential against multidrug- resistant pathogens due to an increase in chemical stability and solubility, decreased rapid evaporation and minimized degradation of active essential oil components. The application of encapsulated essential oils also supports their controlled and sustained release, which enhances their bioavailability and efficacy against multidrug-resistant pathogens. In the recent years, due to increasingly negative consumer perceptions of synthetic preservatives, interest in essential oils and their application in food preservation has been amplified. Moreover, the development of resistance to different antimicrobial agents by bacteria, fungi, viruses, parasites, etc. is a great challenge to the medical field for treating the infections caused by them, and hence, there is a pressing need to look for new and novel antimicrobials. To overcome these problems, nano-encapsulation of essential oils and exploiting the synergies between essential oils, constituents of essential oils, and antibiotics along with essential oils have been recommended as an answer to this problem. However, less is known about the interactions that lead to additive, synergistic, or antagonistic effects. A contributing role of this knowledge could be the design of new and more potent antimicrobial blends, and understanding of the interplay between the components of crude essential oils. This review is written with the purpose of giving an overview of current knowledge about the antimicrobial properties of essential oils and their mechanisms of action, components of essential oils, nano-encapsulated essential oils, and synergistic combinations of essential oils so as to find research areas that can facilitate applications of essential oils to overcome the problem of multidrug-resistant micro-organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comprehensive insight on ocular pharmacokinetics

            Eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment model of ocular drug delivery has been developed for describing the absorption, distribution and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems and routes of administration are discussed including factors affecting intraocular bioavailability. Factors such as pre-corneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, drug metabolism renders ocular delivery challenging and elaborated in this manuscript. Several compartment models are discussed those are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases

              Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                16 February 2021
                2021
                : 15
                : 617-628
                Affiliations
                [1 ]Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University , Changsha, People’s Republic of China
                [2 ]Department of Ophthalmology, Changsha Aier Eye Hospital, Central South University , Changsha, People’s Republic of China
                Author notes
                Correspondence: Ding Lin Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University , Changsha, People’s Republic of ChinaTel +86-13787255158 Email linding@csu.edu.cn
                Article
                295874
                10.2147/DDDT.S295874
                7896742
                © 2021 Lin et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 9, Tables: 3, References: 39, Pages: 12
                Categories
                Original Research

                Comments

                Comment on this article