18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adverse drug reaction monitoring in psychiatry out-patient department of an Indian teaching hospital

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives:

          Adverse drug reactions (ADRs) to psychotropic agents are common and can lead to noncompliance or even discontinuation of therapy. There is paucity of such data in the Indian context. We deemed it worthwhile to assess the suspected ADR profile of psychotropic drugs in an ambulatory setting in a public teaching hospital in Kolkata.

          Materials and Methods:

          A longitudinal observational study was conducted in the outpatient department (OPD) of the concerned psychiatry unit. Twenty consecutive patients per day, irrespective of their psychiatric diagnosis, were screened for suspected ADRs, 2 days in a week, over 15 months. Adverse event history, medication history and other relevant details were captured in a format as adopted in the Indian National Pharmacovigilance Programme. Causality was assessed by criteria of World Health Organization-Uppsala Monitoring Center (WHO-UPC).

          Results:

          We screened 2000 patients (68.69% males, median age 34.4 years), of whom 429 were suspected of having at least one ADR; 84 cases had insufficient evidence about causality (WHO-UMC causality status “unlikely”) and were excluded from further analysis. Thus, 17.25% (95% confidence interval: 15.59-18.91%) of our study population reported ADRs with at least “possible” causality. Of 352 events recorded, 327 (92.90%) were “probable” and the rest “possible”. None was labeled “certain” as rechallenge was not performed. Patients received a median of 3.2 psychotropic drugs each. Thirty-three different kinds of ADRs were noted, including tremor (19.60%), weight gain (15.34%) and constipation (14.49%). Among the incriminated drugs, antipsychotics represented the majority (57.10%), with olanzapine topping the list.

          Conclusions:

          This study offers a representative profile of ADRs to be expected in psychiatry out-patients in an Indian public hospital. Establishment of a psychotropic drug ADR database can be a worthy long-term goal in the Indian context.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review.

          Increasing numbers of reports concerning diabetes, ketoacidosis, hyperglycaemia and lipid dysregulation in patients treated with second-generation (or atypical) antipsychotics have raised concerns about a possible association between these metabolic effects and treatment with these medications. This comprehensive literature review considers the evidence for and against an association between glucose or lipid dysregulation and eight separate second-generation antipsychotics currently available in the US and/or Europe, specifically clozapine, olanzapine, risperidone, quetiapine, zotepine, amisulpride, ziprasidone and aripiprazole. This review also includes an assessment of the potential contributory role of treatment-induced weight gain in conferring risk for hyperglycaemia and dyslipidaemia during treatment with different antipsychotic medications. Substantial evidence from a variety of human populations, including some recent confirmatory evidence in treated psychiatric patients, indicates that increased adiposity is associated with a variety of adverse physiological effects, including decreases in insulin sensitivity and changes in plasma glucose and lipid levels. Comparison of mean weight changes and relative percentages of patients experiencing specific levels of weight increase from controlled, randomised clinical trials indicates that weight gain liability varies significantly across the different second generation antipsychotic agents. Clozapine and olanzapine treatment are associated with the greatest risk of clinically significant weight gain, with other agents producing relatively lower levels of risk. Risperidone, quetiapine, amisulpride and zotepine generally show low to moderate levels of mean weight gain and a modest risk of clinically significant increases in weight. Ziprasidone and aripiprazole treatment are generally associated with minimal mean weight gain and the lowest risk of more significant increases. Published studies including uncontrolled observations, large retrospective database analyses and controlled experimental studies, including randomised clinical trials, indicate that the different second-generation antipsychotics are associated with differing effects on glucose and lipid metabolism. These studies offer generally consistent evidence that clozapine and olanzapine treatment are associated with an increased risk of diabetes mellitus and dyslipidaemia. Inconsistent results, and a generally smaller effect in studies where an effect is reported, suggest limited if any increased risk for treatment-induced diabetes mellitus and dyslipidaemia during risperidone treatment, despite a comparable volume of published data. A similarly smaller and inconsistent signal suggests limited if any increased risk of diabetes or dyslipidaemia during quetiapine treatment, but this is based on less published data than is available for risperidone. The absence of retrospective database studies, and little or no relevant published data from clinical trials, makes it difficult to draw conclusions concerning risk for zotepine or amisulpride, although amisulpride appears to have less risk of treatment-emergent dyslipidaemia in comparison to olanzapine. With increasing data from clinical trials but little or no currently published data from large retrospective database analyses, there is no evidence at this time to suggest that ziprasidone and aripiprazole treatment are associated with an increase in risk for diabetes, dyslipidaemia or other adverse effects on glucose or lipid metabolism. In general, the rank order of risk observed for the second-generation antipsychotic medications suggests that the differing weight gain liability of atypical agents contributes to the differing relative risk of insulin resistance, dyslipidaemia and hyperglycaemia. This would be consistent with effects observed in nonpsychiatric samples, where risk for adverse metabolic changes tends to increase with increasing adiposity. From this perspective, a possible increase in risk would be predicted to occur in association with any treatment that produces increases in weight and adiposity. However, case reports tentatively suggest that substantial weight gain or obesity may not be a factor in up to one-quarter of cases of new-onset diabetes that occur during treatment. Pending further testing from preclinical and clinical studies, limited controlled studies support the hypothesis that clozapine and olanzapine may have a direct effect on glucose regulation independent of adiposity. The results of studies in this area are relevant to primary and secondary prevention efforts that aim to address the multiple factors that contribute to increased prevalence of type 2 diabetes mellitus and cardiovascular disease in populations that are often treated with second-generation antipsychotic medications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death.

            The authors review the mechanisms and establish the risk of torsade de pointes and sudden death with antipsychotic drugs. They present a review of original concepts, the distinction between familial and drug-induced cases of torsade de pointes, and the recognition of the role of noncardiac drugs in torsade de pointes and sudden death. They review the evidence linking QTc interval prolongation, potassium channels, and torsade de pointes from both the long QT syndrome and drugs. They examine the risk for torsade de pointes from antipsychotic drugs and estimate the frequency of sudden death on the basis of epidemiological data in normal and schizophrenic populations. All drugs that cause torsade de pointes prolong the QTc interval and bind to the potassium rectifier channel, but the relationships are not precise. Prediction of torsade de pointes and sudden death can be improved by examining dose dependency, the percent of QTc intervals higher than 500 msec, and the risk of drug-drug interactions. Although sudden unexpected death occurs almost twice as often in populations treated with antipsychotics as in normal populations, there are still only 10-15 such events in 10,000 person-years of observation. Although pimozide, sertindole, droperidol, and haloperidol have been documented to cause torsade de pointes and sudden death, the most marked risk is with thioridazine. There is no association with olanzapine, quetiapine, or risperidone. Ziprasidone does prolong the QT interval, but there is no evidence to suggest that this leads to torsade de pointes or sudden death. Only widespread use will prove if ziprasidone is entirely safe. To date, all antipsychotic drugs have the potential for serious adverse events. Balancing these risks with the positive effects of treatment poses a challenge for psychiatry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry.

              Therapeutic Drug Monitoring (TDM) is a valid tool to optimise pharmacotherapy. It enables the clinician to adjust the dosage of drugs according to the characteristics of the individual patient. In psychiatry, TDM is an established procedure for lithium, some antidepressants and antipsychotics. In spite of its obvious advantages, however, the use of TDM in everyday clinical practice is far from optimal. The interdisciplinary TDM group of the Arbeitsgemeinschaft fur Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) has therefore worked out consensus guidelines to assist psychiatrists and laboratories involved in psychotropic drug analysis to optimise the use of TDM of psychotropic drugs. Five research-based levels of recommendation were defined with regard to routine monitoring of plasma concentrations for dose titration of 65 psychoactive drugs: (1) strongly recommended, (2) recommended, (3) useful, (4) probably useful and (5) not recommended. A second approach defined indications to use TDM, e. g. control of compliance, lack of clinical response or adverse effects at recommended doses, drug interactions, pharmacovigilance programs, presence of a genetic particularity concerning the drug metabolism, children, adolescents and elderly patients. Indications for TDM are relevant for all drugs either with or without validated therapeutic ranges. When studies on therapeutic ranges are lacking, target ranges should be plasma concentrations that are normally observed at therapeutic doses of the drug. Therapeutic ranges of plasma concentrations that are considered to be optimal for treatment are proposed for those drugs, for which the evaluation of the literature demonstrated strong evidence. Moreover, situations are defined when pharmacogenetic (phenotyping or genotyping) tests are informative in addition to TDM. Finally, practical instructions are given how to use TDM. They consider preparation of TDM, analytical procedures, reporting and interpretation of results and the use of information for patient treatment. Using the consensus guideline will help to ensure optimal clinical benefit of TDM in psychiatry.
                Bookmark

                Author and article information

                Journal
                Indian J Pharmacol
                IJPharm
                Indian Journal of Pharmacology
                Medknow Publications (India )
                0253-7613
                1998-3751
                February 2011
                : 43
                : 1
                : 36-39
                Affiliations
                Department of Pharmacology, Institute of Postgraduate Medical Education & Research (IPGME&R), 244B, Acharya J. C. Bose Road, Kolkata - 700 020, India
                Author notes
                Correspondence to: Dr. Avijit Hazra, E-mail: blowfans@ 123456yahoo.co.in
                Article
                IJPharm-43-36
                10.4103/0253-7613.75664
                3062118
                21455419
                be809fea-c794-44d7-83b5-5aa9ea270298
                © Indian Journal of Pharmacology

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 07 April 2010
                : 07 July 2010
                : 21 October 2010
                Categories
                Research Article

                Pharmacology & Pharmaceutical medicine
                adverse drug reactions,pharmacovigilance,psychiatry,psychotropic drugs

                Comments

                Comment on this article