1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temperature‐Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Temperature‐responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor–acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color‐tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.

          In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised of chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor-acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular "wires" that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving pi-stacking can be used to integrate light harvesting with charge separation and transport. Our current strategy uses covalent building blocks based on chemically robust arylene imide and diimide dyes, biomimetic porphyrins, and chlorophylls. We take advantage of the shapes, sizes, and intermolecular interactions--such as pi-pi and/or metal-ligand interactions--of these molecules to direct the formation of supramolecular structures having enhanced energy capture and charge-transport properties. We use small- and wide-angle X-ray scattering (SAXS/WAXS) from a synchrotron source to elucidate the solution phase structures of these monodisperse noncovalent aggregates. We expect that a greater understanding of self-assembly using pi-stacking and molecular designs that combine those features with hydrogen bonding and metal-ligand bonding could simplify the structure of the building blocks for artificial photosynthetic complexes, while retaining their ability to assemble complex, photofunctional structures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bio-inspired variable structural color materials.

            Natural structural color materials, especially those that can undergo reversible changes, are attracting increasing interest in a wide variety of research fields. Inspired by the natural creatures, many elaborately nanostructured photonic materials with variable structural colors were developed. These materials have found important applications in switches, display devices, sensors, and so on. In this critical review, we will provide up-to-date research concerning the natural and bio-inspired photonic materials with variable structural colors. After introducing the variable structural colors in natural creatures, we will focus on the studies of artificial variable structural color photonic materials, including their bio-inspired designs, fabrications and applications. The prospects for the future development of these fantastic variable structural color materials will also be presented. We believe this review will promote the communications among biology, bionics, chemistry, optical physics, and material science (196 references). This journal is © The Royal Society of Chemistry 2012
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanobelt self-assembly from an organic n-type semiconductor: propoxyethyl-PTCDI.

              Nanobelt structures have been fabricated for an n-type semiconductor molecule, N,N'-di(propoxyethyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI). The short alkyloxy side chain not only affords effective pi-pi stacking in polar solvents for self-assembling but also provides sufficient solubility in nonpolar solvents for solution processing. As revealed by both AFM and electron microscopies, the nanobelts have an approximately rectangular cross section, with a typical thickness of about 100 nm and a width in the range of 300-500 nm. The length of the nanobelts ranges from 10 to a few tens of micrometers. The highly organized molecular packing (uniaxial crystalline phase) has been deduced from the measurement of electron diffraction and polarized microscopy imaging. The detected optical axis is consistent with the one-dimensional stacking of the molecules.
                Bookmark

                Author and article information

                Contributors
                m.g.debije@tue.nl
                Journal
                Angew Chem Int Ed Engl
                Angew. Chem. Int. Ed. Engl
                10.1002/(ISSN)1521-3773
                ANIE
                Angewandte Chemie (International Ed. in English)
                John Wiley and Sons Inc. (Hoboken )
                1433-7851
                1521-3773
                20 December 2017
                22 January 2018
                : 57
                : 4 ( doiID: 10.1002/anie.v57.4 )
                : 1030-1033
                Affiliations
                [ 1 ] Department of Chemical Engineering and Chemistry, Functional Organic Materials and Devices Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
                [ 2 ] Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
                [ 3 ] Institute for Complex Molecular Systems Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
                Article
                ANIE201710487
                10.1002/anie.201710487
                5814871
                29205708
                be8e1c0a-7d47-43dc-bbb5-21d696e7a8a9
                © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 11 October 2017
                Page count
                Figures: 5, Tables: 0, References: 29, Pages: 4, Words: 0
                Funding
                Funded by: TKI Topsector Tuinbouw &Uitgangsmaterialen
                Award ID: 1604-037
                Categories
                Communication
                Communications
                Host–Guest Systems
                Custom metadata
                2.0
                anie201710487
                January 22, 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.3.2.2 mode:remove_FC converted:16.02.2018

                Chemistry
                energy transfer,fluorescence,liquid crystals,luminescent solar concentrators,perylene dyes

                Comments

                Comment on this article