76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ABCtoolbox: a versatile toolkit for approximate Bayesian computations

      product-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations.

          Results

          Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females.

          Conclusion

          ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation

          Summary: Genetic data obtained on population samples convey information about their evolutionary history. Inference methods can extract part of this information but they require sophisticated statistical techniques that have been made available to the biologist community (through computer programs) only for simple and standard situations typically involving a small number of samples. We propose here a computer program (DIY ABC) for inference based on approximate Bayesian computation (ABC), in which scenarios can be customized by the user to fit many complex situations involving any number of populations and samples. Such scenarios involve any combination of population divergences, admixtures and population size changes. DIY ABC can be used to compare competing scenarios, estimate parameters for one or more scenarios and compute bias and precision measures for a given scenario and known values of parameters (the current version applies to unlinked microsatellite data). This article describes key methods used in the program and provides its main features. The analysis of one simulated and one real dataset, both with complex evolutionary scenarios, illustrates the main possibilities of DIY ABC. Availability: The software DIY ABC is freely available at http://www.montpellier.inra.fr/CBGP/diyabc. Contact: j.cornuet@imperial.ac.uk Supplementary information: Supplementary data are also available at http://www.montpellier.inra.fr/CBGP/diyabc
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequential Monte Carlo without likelihoods.

            Recent new methods in Bayesian simulation have provided ways of evaluating posterior distributions in the presence of analytically or computationally intractable likelihood functions. Despite representing a substantial methodological advance, existing methods based on rejection sampling or Markov chain Monte Carlo can be highly inefficient and accordingly require far more iterations than may be practical to implement. Here we propose a sequential Monte Carlo sampler that convincingly overcomes these inefficiencies. We demonstrate its implementation through an epidemiological study of the transmission rate of tuberculosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems

              Approximate Bayesian computation methods can be used to evaluate posterior distributions without having to calculate likelihoods. In this paper we discuss and apply an approximate Bayesian computation (ABC) method based on sequential Monte Carlo (SMC) to estimate parameters of dynamical models. We show that ABC SMC gives information about the inferability of parameters and model sensitivity to changes in parameters, and tends to perform better than other ABC approaches. The algorithm is applied to several well known biological systems, for which parameters and their credible intervals are inferred. Moreover, we develop ABC SMC as a tool for model selection; given a range of different mathematical descriptions, ABC SMC is able to choose the best model using the standard Bayesian model selection apparatus.
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central
                1471-2105
                2010
                4 March 2010
                : 11
                : 116
                Affiliations
                [1 ]Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
                [2 ]Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
                [3 ]Ecole d'ingénieurs de Fribourg, 1705 Fribourg, Switzerland
                [4 ]Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
                Article
                1471-2105-11-116
                10.1186/1471-2105-11-116
                2848233
                20202215
                bee73e78-b7ce-402c-aa70-0d268b8636df
                Copyright ©2010 Wegmann et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 September 2009
                : 4 March 2010
                Categories
                Software

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article