6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wound infections are still problematic in many cases and demand new alternatives for current treatment strategies. In recent years, biomaterials-based wound dressings have received much attention due to their potentials and many studies have been performed based on them. Accordingly, in this study, we fabricated and optimized an antibacterial chitosan/silk fibroin (CS/SF) electrospun nanofiber bilayer containing different concentrations of a cationic antimicrobial peptide (AMP) for wound dressing applications. The fabricated CS/SF nanofiber was fully characterized and compared to the electrospun silk fibroin and electrospun chitosan alone in vitro. Then, the release rate of different concentrations of peptide (16, 32, and 64 µg/ml) from peptide-loaded CS/SF nanofiber was investigated. Finally, based on cytotoxic activity, the antibacterial activity of scaffolds containing 16 and 32 µg/ml of the peptide was evaluated against standard and multi-drug resistant strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa isolated from burn patients. The peptide-loaded CS/SF nanofiber displayed appropriate mechanical properties, high water uptake, suitable biodegradation rate, a controlled release without cytotoxicity on Hu02 human foreskin fibroblast cells at the 16 and 32 µg/ml concentrations of peptide. The optimized CS/SF containing 32 μg/ml peptide showed strong antibacterial activity against all experimental strains from standard to resistance. The results showed that the fabricated antimicrobial nanofiber has the potential to be applied as a wound dressing for infected wound healing, although further studies are needed in vivo.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Antibiotic susceptibility testing by a standardized single disk method.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrospinning: applications in drug delivery and tissue engineering.

            Despite its long history and some preliminary work in tissue engineering nearly 30 years ago, electrospinning has not gained widespread interest as a potential polymer processing technique for applications in tissue engineering and drug delivery until the last 5-10 years. This renewed interest can be attributed to electrospinning's relative ease of use, adaptability, and the ability to fabricate fibers with diameters on the nanometer size scale. Furthermore, the electrospinning process affords the opportunity to engineer scaffolds with micro to nanoscale topography and high porosity similar to the natural extracellular matrix (ECM). The inherently high surface to volume ratio of electrospun scaffolds can enhance cell attachment, drug loading, and mass transfer properties. Various materials can be electrospun including: biodegradable, non-degradable, and natural materials. Electrospun fibers can be oriented or arranged randomly, giving control over both the bulk mechanical properties and the biological response to the scaffold. Drugs ranging from antibiotics and anticancer agents to proteins, DNA, and RNA can be incorporated into electrospun scaffolds. Suspensions containing living cells have even been electrospun successfully. The applications of electrospinning in tissue engineering and drug delivery are nearly limitless. This review summarizes the most recent and state of the art work in electrospinning and its uses in tissue engineering and drug delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The antimicrobial peptides and their potential clinical applications.

              Nowadays, the bacterial drug resistance leads to serious healthy problem worldwide due to the long-term use and the abuse of traditional antibiotics result in drug resistance of bacteria. Finding a new antibiotic is becoming more and more difficult. Antimicrobial peptides (AMPs) are the host defense peptides with most of them being the cationic (positively charged) and amphiphilic (hydrophilic and hydrophobic) α-helical peptide molecules. The membrane permeability is mostly recognized as the well-accepted mechanism to describe the action of cationic AMPs. These cationic AMPs can bind and interact with the negatively charged bacterial cell membranes, leading to the change of the electrochemical potential on bacterial cell membranes, inducing cell membrane damage and the permeation of larger molecules such as proteins, destroying cell morphology and membranes and eventually resulting in cell death. These AMPs have been demonstrated to have their own advantages over the traditional antibiotics with a broad-spectrum of antimicrobial activities including anti-bacteria, anti-fungi, anti-viruses, and anti-cancers, and even overcome bacterial drug-resistance. The natural AMPs exist in a variety of organisms and are not stable with a short half-life, more or less toxic side effects, and particularly may have severe hemolytic activity. To open the clinical applications, it is necessary and important to develop the synthetic and long-lasting AMP analogs that overcome the disadvantages of their natural peptides and the potential problems for the drug candidates.
                Bookmark

                Author and article information

                Contributors
                mm.genetics@gmail.com
                mazaher.gholipour@gmail.com
                Journal
                J Mater Sci Mater Med
                J Mater Sci Mater Med
                Journal of Materials Science. Materials in Medicine
                Springer US (New York )
                0957-4530
                1573-4838
                28 August 2021
                28 August 2021
                2021
                : 32
                : 9
                : 114
                Affiliations
                [1 ]GRID grid.411521.2, ISNI 0000 0000 9975 294X, Applied Biotechnology Research Center, , Baqiyatallah University of Medical Sciences, ; Tehran, Iran
                [2 ]GRID grid.411600.2, Hematopoietic Stem Cell Research Center, , Shahid Beheshti University of Medical Sciences, ; Tehran, Iran
                [3 ]GRID grid.411746.1, ISNI 0000 0004 4911 7066, Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, , Iran University of Medical Sciences, ; Tehran, Iran
                Article
                6542
                10.1007/s10856-021-06542-6
                8403119
                34455501
                befe707e-761e-4eb4-8186-3ff7e442c8df
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 January 2021
                : 30 May 2021
                Categories
                Biomaterials Synthesis and Characterization
                Custom metadata
                © The Author(s) 2021

                Materials science
                Materials science

                Comments

                Comment on this article