60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AtPGL3 is an Arabidopsis BURP domain protein that is localized to the cell wall and promotes cell enlargement

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The BURP domain is a plant-specific domain that has been identified in secretory proteins, and some of these are involved in cell wall modification. The tomato polygalacturonase I complex involved in pectin degradation in ripening fruits has a non-catalytic subunit that has a BURP domain. This protein is called polygalacturonase 1 beta (PG1β) and the Arabidopsis genome encodes three proteins that exhibit strong amino acid similarities with PG1β? We generated Arabidopsis lines in which expression levels of AtPGLs are altered in order to investigate the biological roles of the Arabidopsis PG1β-like proteins (AtPGLs). Among the three AtPGLs ( AtPGL1-3), AtPGL3 exhibited the highest transcriptional activity throughout all developmental stages. AtPGL triple mutant plants have smaller rosette leaves than those of wild type plants because the leaf cells are smaller in the mutant plants. Interestingly, when we overexpressed AtPGL3 using a 35S promoter, leaf cells in transgenic plants grew larger than those of the wild type. A C-terminal GFP fusion protein of AtPGL3 complemented phenotypes of the triple mutant plants and it localized to the cell wall. A truncated AtPGL3-GFP fusion protein lacking the BURP domain failed to rescue the mutant phenotypes even though the GFP protein was targeted to the cell wall, indicating that the BURP domain is required for the protein's effect on cell expansion. Quantitative RT-PCR and immunoblot analyses indicated that the α-expansin 6 gene is up-regulated in the overexpressor plants. Taken together, these results indicate that AtPGL3 is an apoplastic BURP domain protein playing a role in cell expansion.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Dosage sensitivity and the evolution of gene families in yeast.

          According to what we term the balance hypothesis, an imbalance in the concentration of the subcomponents of a protein-protein complex can be deleterious. If so, there are two consequences: first, both underexpression and overexpression of protein complex subunits should lower fitness, and second, the accuracy of transcriptional co-regulation of subunits should reflect the deleterious consequences of imbalance. Here we show that all these predictions are upheld in yeast (Saccharomyces cerevisiae). This supports the hypothesis that dominance is a by-product of physiology and metabolism rather than the result of selection to mask the deleterious effects of mutations. Beyond this, single-gene duplication of protein subunits is expected to be harmful, as this, too, leads to imbalance. As then expected, we find that members of large gene families are rarely involved in complexes. The balance hypothesis therefore provides a single theoretical framework for understanding components both of dominance and of gene family size.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae.

            Genomic and proteomic approaches can provide hypotheses concerning function for the large number of genes predicted from genome sequences. Because of the artificial nature of the assays, however, the information from these high-throughput approaches should be considered with caution. Although it is possible that more meaningful hypotheses could be formulated by integrating the data from various functional genomic and proteomic projects, it has yet to be seen to what extent the data can be correlated and how such integration can be achieved. We developed a 'transcriptome-interactome correlation mapping' strategy to compare the interactions between proteins encoded by genes that belong to common expression-profiling clusters with those between proteins encoded by genes that belong to different clusters. Using this strategy with currently available data sets for Saccharomyces cerevisiae, we provide the first global evidence that genes with similar expression profiles are more likely to encode interacting proteins. We show how this correlation between transcriptome and interactome data can be used to improve the quality of hypotheses based on the information from both approaches. The strategy described here may help to integrate other functional genomic and proteomic data, both in yeast and in higher organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis.

              Mutants at the PROCUSTE1 (PRC1) locus show decreased cell elongation, specifically in roots and dark-grown hypocotyls. Cell elongation defects are correlated with a cellulose deficiency and the presence of gapped walls. Map-based cloning of PRC1 reveals that it encodes a member (CesA6) of the cellulose synthase catalytic subunit family, of which at least nine other members exist in Arabidopsis. Mutations in another family member, RSW1 (CesA1), cause similar cell wall defects in all cell types, including those in hypocotyls and roots, suggesting that cellulose synthesis in these organs requires the coordinated expression of at least two distinct cellulose synthase isoforms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                09 June 2015
                2015
                : 6
                : 412
                Affiliations
                [1] 1Plant Molecular Cellular Biology Program, Microbiology and Cell Sciences, University of Florida Gainesville, FL, USA
                [2] 2State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong Hong Kong, China
                Author notes

                Edited by: Erik Nielsen, University of Michigan, USA

                Reviewed by: Mary Lai Preuss, Webster University, USA; Charles T. Anderson, The Pennsylvania State University, USA; Aaron Liepman, Eastern Michigan University, USA

                *Correspondence: Byung-Ho Kang, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, 409 East Block Science Center, Shatin, NT, Hong Kong, China bkang@ 123456cuhk.edu.hk

                This article was submitted to Plant Cell Biology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2015.00412
                4460304
                26106400
                bf0cea09-a1da-47ae-a558-befc08418c9a
                Copyright © 2015 Park, Cui and Kang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 February 2015
                : 22 May 2015
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 41, Pages: 11, Words: 7812
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                burp domain protein,cell expansion,cell wall protein,alpha-expansin,polygalacturonase beta subunit

                Comments

                Comment on this article