1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inhibition of viral suppressor of RNAi proteins by designer peptides protects from enteroviral infection in vivo

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Origins and Mechanisms of miRNAs and siRNAs.

          Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.

            Homology models of proteins are of great interest for planning and analysing biological experiments when no experimental three-dimensional structures are available. Building homology models requires specialized programs and up-to-date sequence and structural databases. Integrating all required tools, programs and databases into a single web-based workspace facilitates access to homology modelling from a computer with web connection without the need of downloading and installing large program packages and databases. SWISS-MODEL workspace is a web-based integrated service dedicated to protein structure homology modelling. It assists and guides the user in building protein homology models at different levels of complexity. A personal working environment is provided for each user where several modelling projects can be carried out in parallel. Protein sequence and structure databases necessary for modelling are accessible from the workspace and are updated in regular intervals. Tools for template selection, model building and structure quality evaluation can be invoked from within the workspace. Workflow and usage of the workspace are illustrated by modelling human Cyclin A1 and human Transmembrane Protease 3. The SWISS-MODEL workspace can be accessed freely at http://swissmodel.expasy.org/workspace/
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging

              The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging XpdTTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored.
                Bookmark

                Author and article information

                Contributors
                Journal
                Immunity
                Immunity
                Elsevier BV
                10747613
                October 2021
                October 2021
                : 54
                : 10
                : 2231-2244.e6
                Article
                10.1016/j.immuni.2021.08.027
                34555337
                bf36a177-9cae-43b9-8987-5fe48469f9e7
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article