26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new 2D-based method for myocardial velocity strain and strain rate quantification in a normal adult and paediatric population: assessment of reference values

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent advances in technology have provided the opportunity for off-line analysis of digital video-clips of two-dimensional (2-D) echocardiographic images.

          Commercially available software that follows the motion of cardiac structures during cardiac cycle computes both regional and global velocity, strain, and strain rate (SR).

          The present study aims to evaluate the clinical applicability of the software based on the tracking algorithm feature (studied for cardiology purposes) and to derive the reference values for longitudinal and circumferential strain and SR of the left ventricle in a normal population of children and young adults.

          Methods

          45 healthy volunteers (30 adults: 19 male, 11 female, mean age 37 ± 6 years; 15 children: 8 male, 7 female, mean age 8 ± 2 years) underwent transthoracic echocardiographic examination; 2D cine-loops recordings of apical 4-four 4-chamber (4C) and 2-chamber (2C) views and short axis views were stored for off-line analysis.

          Computer analyses were performed using specific software relying on the algorithm of optical flow analysis, specifically designed to track the endocardial border, installed on a Windows™ based computer workstation. Inter and intra-observer variability was assessed.

          Results

          The feasibility of measurements obtained with tissue tracking system was higher in apical view (100% for systolic events; 64% for diastolic events) than in short axis view (70% for systolic events; 52% for diastolic events). Longitudinal systolic velocity decreased from base to apex in all subjects (5.22 ± 1.01 vs. 1.20 ± 0.88; p < 0.0001). Longitudinal strain and SR significantly increased from base to apex in all subjects (-12.95 ± 6.79 vs. -14.87 ± 6.78; p = 0.002; -0.72 ± 0.39 vs. -0.94 ± 0.48, p = 0.0001, respectively). Similarly, circumferential strain and SR increased from base to apex (-21.32 ± 5.15 vs. -27.02 ± 5.88, p = 0.002; -1.51 ± 0.37 vs. -1.95 ± 0.57, p = 0.003, respectively).

          Values of global systolic SR, both longitudinal and circumferential, were significantly higher in children than in adults (-1.3 ± 0.2, vs. -1.11 ± 0.2, p = 0.006; -1.9 ± 0.6 vs. -1.6 ± 0.5, p = 0.0265, respectively). No significant differences in longitudinal and circumferential systolic velocities were identified for any segment when comparing adults with children.

          Conclusion

          This 2D based tissue tracking system used for computation is reliable and applicable in adults and children particularly for systolic events. Measured with this technology, we have established reference values for myocardial velocity, Strain and SR for both young adults and children.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          A concordance correlation coefficient to evaluate reproducibility.

          L Lin (1989)
          A new reproducibility index is developed and studied. This index is the correlation between the two readings that fall on the 45 degree line through the origin. It is simple to use and possesses desirable properties. The statistical properties of this estimate can be satisfactorily evaluated using an inverse hyperbolic tangent transformation. A Monte Carlo experiment with 5,000 runs was performed to confirm the estimate's validity. An application using actual data is given.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging.

            Tissue Doppler echocardiography-derived strain rate and strain measurements (SDE) are new quantitative indices of intrinsic cardiac deformation. The aim of this study was to validate and compare these new indices of regional cardiac function to measurements of 3-dimensional myocardial strain by tagged MRI. The study population included 33 healthy volunteers, 17 patients with acute myocardial infarction, and 8 patients with suspected coronary artery disease who were studied during dobutamine stress echocardiography. Peak systolic myocardial velocities were measured by tissue Doppler echocardiography, peak systolic strain rates and strains by SDE, and strains by tagged MRI. In healthy individuals, longitudinal myocardial Doppler velocities decreased progressively from base to apex, whereas myocardial strain rates and strains were uniform in all segments. In patients with acute infarction, abnormal strains clearly identified dysfunctional areas. In infarcted regions, SDE showed 1.5+/-4.3% longitudinal stretching compared with -15.0+/-3.9% shortening in remote myocardium (P<0.001), and radial measurements showed -6.9+/-4.1% thinning and 14.3+/-5.0% thickening (P<0.001), respectively. During dobutamine infusion, longitudinal strains by SDE increased significantly from -13.5% to -23.8% (P<0.01) and radial strains increased from 13.1+/-3.1% to 29.3+/-11.5% (P<0.01). Comparisons between myocardial strains by SDE and tagged MRI in healthy individuals (n=11), in infarct patients (n=17), and during stress echo (n=4) showed excellent correlations (r=0.89 and r=0.96 for longitudinal and radial strains, respectively, P< 0.001). The present study demonstrates the ability of Doppler echocardiography to measure myocardial strains in a clinical setting. Myocardial strains by Doppler may represent a new powerful method for quantifying left ventricular function noninvasively in humans.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Corrections

              (2000)
                Bookmark

                Author and article information

                Journal
                Cardiovasc Ultrasound
                Cardiovascular Ultrasound
                BioMed Central
                1476-7120
                2009
                13 February 2009
                : 7
                : 8
                Affiliations
                [1 ]Pediatric Cardiology and Adult with Congenital Heart Disease Department, IRCCS San Donato Hospital, Milan, Italy
                [2 ]Cardiology Department, Niguarda Ca' Granda Hospital, Milan, Italy
                [3 ]Adult Clinical Researches Cardiac Surgery Department, IRCCS San Donato Hospital, Milan, Italy
                Article
                1476-7120-7-8
                10.1186/1476-7120-7-8
                2657114
                19216782
                bf4a4c63-84fe-462b-a3fa-7450ee3f3176
                Copyright © 2009 Bussadori et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 December 2008
                : 13 February 2009
                Categories
                Research

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article