16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Review of recent advances in carbon dioxide separation and capture

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references217

          • Record: found
          • Abstract: not found
          • Article: not found

          Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The upper bound revisited

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultrahigh porosity in metal-organic frameworks.

              Crystalline solids with extended non-interpenetrating three-dimensional crystal structures were synthesized that support well-defined pores with internal diameters of up to 48 angstroms. The Zn4O(CO2)6 unit was joined with either one or two kinds of organic link, 4,4',4''-[benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)]tribenzoate (BTE), 4,4',44''-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate (BBC), 4,4',44''-benzene-1,3,5-triyl-tribenzoate (BTB)/2,6-naphthalenedicarboxylate (NDC), and BTE/biphenyl-4,4'-dicarboxylate (BPDC), to give four metal-organic frameworks (MOFs), MOF-180, -200, -205, and -210, respectively. Members of this series of MOFs show exceptional porosities and gas (hydrogen, methane, and carbon dioxide) uptake capacities. For example, MOF-210 has Brunauer-Emmett-Teller and Langmuir surface areas of 6240 and 10,400 square meters per gram, respectively, and a total carbon dioxide storage capacity of 2870 milligrams per gram. The volume-specific internal surface area of MOF-210 (2060 square meters per cubic centimeter) is equivalent to the outer surface of nanoparticles (3-nanometer cubes) and near the ultimate adsorption limit for solid materials.
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2013
                2013
                : 3
                : 45
                : 22739
                Article
                10.1039/c3ra43965h
                bf649ff9-f73c-43fa-af47-78bd8b6e387c
                © 2013
                History

                Comments

                Comment on this article