11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of Dynamics in Enzyme Catalysis: Substantial versus Semantic Controversies

      research-article
      Accounts of Chemical Research
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Conspectus

          The role of the enzyme’s dynamic motions in catalysis is at the center of heated contemporary debates among both theoreticians and experimentalists. Resolving these apparent disputes is of both intellectual and practical importance: incorporation of enzyme dynamics could be critical for any calculation of enzymatic function and may have profound implications for structure-based drug design and the design of biomimetic catalysts.

          Analysis of the literature suggests that while part of the dispute may reflect substantial differences between theoretical approaches, much of the debate is semantic. For example, the term “protein dynamics” is often used by some researchers when addressing motions that are in thermal equilibrium with their environment, while other researchers only use this term for nonequilibrium events. The last cases are those in which thermal energy is “stored” in a specific protein mode and “used” for catalysis before it can dissipate to its environment (i.e., “nonstatistical dynamics”). This terminology issue aside, a debate has arisen among theoreticians around the roles of nonstatistical vs statistical dynamics in catalysis. However, the author knows of no experimental findings available today that examined this question in enzyme catalyzed reactions.

          Another source of perhaps nonsubstantial argument might stem from the varying time scales of enzymatic motions, which range from seconds to femtoseconds. Motions at different time scales play different roles in the many events along the catalytic cascade (reactant binding, reprotonation of reactants, structural rearrangement toward the transition state, product release, etc.). In several cases, when various experimental tools have been used to probe catalytic events at differing time scales, illusory contradictions seem to have emerged. In this Account, recent attempts to sort the merits of those questions are discussed along with possible future directions.

          A possible summary of current studies could be that enzyme, substrate, and solvent dynamics contribute to enzyme catalyzed reactions in several ways: first via mutual “induced-fit” shifting of their conformational ensemble upon binding; then via thermal search of the conformational space toward the reaction’s transition-state (TS) and the rare event of the barrier crossing toward products, which is likely to be on faster time scales then the first and following events; and finally via the dynamics associated with products release, which are rate-limiting for many enzymatic reactions. From a chemical perspective, close to the TS, enzymatic systems seem to stiffen, restricting motions orthogonal to the chemical coordinate and enabling dynamics along the reaction coordinate to occur selectively. Studies of how enzymes evolved to support those efficient dynamics at various time scales are still in their infancy, and further experiments and calculations are needed to reveal these phenomena in both enzymes and uncatalyzed reactions.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          At the dawn of the 21st century: Is dynamics the missing link for understanding enzyme catalysis?

          Enzymes play a key role in almost all biological processes, accelerating a variety of metabolic reactions as well as controlling energy transduction, the transcription, and translation of genetic information, and signaling. They possess the remarkable capacity to accelerate reactions by many orders of magnitude compared to their uncatalyzed counterparts, making feasible crucial processes that would otherwise not occur on biologically relevant timescales. Thus, there is broad interest in understanding the catalytic power of enzymes on a molecular level. Several proposals have been put forward to try to explain this phenomenon, and one that has rapidly gained momentum in recent years is the idea that enzyme dynamics somehow contributes to catalysis. This review examines the dynamical proposal in a critical way, considering basically all reasonable definitions, including (but not limited to) such proposed effects as "coupling between conformational and chemical motions," "landscape searches" and "entropy funnels." It is shown that none of these proposed effects have been experimentally demonstrated to contribute to catalysis, nor are they supported by consistent theoretical studies. On the other hand, it is clarified that careful simulation studies have excluded most (if not all) dynamical proposals. This review places significant emphasis on clarifying the role of logical definitions of different catalytic proposals, and on the need for a clear formulation in terms of the assumed potential surface and reaction coordinate. Finally, it is pointed out that electrostatic preorganization actually accounts for the observed catalytic effects of enzymes, through the corresponding changes in the activation free energies. 2009 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Energy flow in proteins.

            D. Leitner (2007)
            Energy flows anisotropically through the residues and vibrational states of globular proteins. A variety of experimental and computational studies have identified energy transport channels traversing many residues, in some cases connecting functional regions, potentially important in allostery, and in other cases having no apparent function. This property and the diffusion of energy in proteins are mimicked by transport on a percolation cluster. I review work that addresses connections between globular proteins, percolation clusters, and the similarity of energy flow and thermal transport in these systems. I also review experimental and theoretical studies of the anisotropic flow of energy through the vibrational states of a protein, a property that also can be understood by comparison with simple model disordered systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics.

              The hydrogen-atom transfer in soybean lipoxygenase-1 (SLO) exhibits a large kinetic isotope effect on k(cat) (KIE = 81) near room temperature and a very weak temperature dependence (E(act) = 2.1 kcal/mol). These properties are consistent with H small middle dot transfer that occurs entirely by a tunneling event. Mutants of SLO were prepared, and the temperature dependence of the KIE was measured, to test for alterations in the tunneling behavior. All mutants studied exhibit KIEs of similar, large magnitude at 30 degrees C, despite an up to 3 orders of magnitude change in k(cat). E(act) for two of the mutants (Leu(754) --> Ala, Leu(546) --> Ala) is larger than for wild-type (WT), and the KIE becomes slightly more temperature dependent. In contrast, Ile(553) --> Ala exhibits k(cat) and E(act) parameters similar to wild-type soybean lipoxygenase-1 (WT-SLO) for protiated substrate; however, the KIE is markedly temperature dependent. The behavior of the former two mutants could reflect increased reorganization energies (lambda), but the behavior of the latter mutant is inconsistent with this description. We have invoked a full H* tunneling model (Kuznetsov, A. M.; Ulstrup, J. Can. J. Chem. 1999, 77, 1085-1096) to explain the temperature dependence of the KIE, which is indicative of the extent to which distance sampling (gating) modulates hydrogen transfer. WT-SLO exhibits a very small E(act) and a nearly temperature-independent KIE, which was modeled as arising from a compressed hydrogen transfer distance with little modulation of the hydrogen transfer distance. The observations on the Leu(754) --> Ala and Leu(546) --> Ala mutants were modeled as arising from a slightly less compressed active site with greater modulation of the hydrogen transfer distance by environmental dynamics. Finally, the observed behavior of the Ile(553) --> Ala mutant indicates a relaxed active site with extensive involvement of gating to facilitate hydrogen transfer. We conclude that WT-SLO has an active site structure that is well organized to support hydrogen tunneling and that mutations perturb structural elements that support hydrogen tunneling. Modest alterations in active site residues increase lambda and/or increase the hydrogen transfer distance, thereby affecting the probability that tunneling can occur. These studies allow the detection and characterization of a protein-gating mode in catalysis.
                Bookmark

                Author and article information

                Journal
                Acc Chem Res
                Acc. Chem. Res
                ar
                achre4
                Accounts of Chemical Research
                American Chemical Society
                0001-4842
                1520-4898
                24 December 2015
                24 December 2014
                17 February 2015
                : 48
                : 2
                : 466-473
                Affiliations
                [1]Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
                Author notes
                [* ]E-mail, amnon-kohen@ 123456uiowa.edu ; phone, 319-335-0234.
                Article
                10.1021/ar500322s
                4334245
                25539442
                bf81a144-ead9-408a-971f-8a7d878e2fbc
                Copyright © 2014 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 29 August 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                ar500322s
                ar-2014-00322s

                General chemistry
                General chemistry

                Comments

                Comment on this article