1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synthesize of pluronic-based nanovesicular formulation loaded with Pistacia atlantica extract for improved antimicrobial efficiency

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Antimicrobial Resistance: Implications and Costs

          Abstract Antimicrobial resistance (AMR) has developed as one of the major urgent threats to public health causing serious issues to successful prevention and treatment of persistent diseases. In spite of different actions taken in recent decades to tackle this issue, the trends of global AMR demonstrate no signs of slowing down. Misusing and overusing different antibacterial agents in the health care setting as well as in the agricultural industry are considered the major reasons behind the emergence of antimicrobial resistance. In addition, the spontaneous evolution, mutation of bacteria, and passing the resistant genes through horizontal gene transfer are significant contributors to antimicrobial resistance. Many studies have demonstrated the disastrous financial consequences of AMR including extremely high healthcare costs due to an increase in hospital admissions and drug usage. The literature review, which included articles published after the year 2012, was performed using Scopus, PubMed and Google Scholar with the utilization of keyword searches. Results indicated that the multifactorial threat of antimicrobial resistance has resulted in different complex issues affecting countries across the globe. These impacts found in the sources are categorized into three different levels: patient, healthcare, and economic. Although gaps in knowledge about AMR and areas for improvement are obvious, there is not any clearly understood progress to put an end to the persistent trends of antimicrobial resistance.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide.

              Niosomes have been reported as a possible approach to improve the low corneal penetration and bioavailability characteristics shown by conventional ophthalmic vehicles. Niosomes formed from Span 40 or Span 60 and cholesterol in the molar ratios of 7:4, 7:6 and 7:7 were prepared using reverse-phase evaporation and thin film hydration methods. The prepared systems were characterized for entrapment efficiency, size, shape and in vitro drug release. Stability studies were carried out to investigate the leaching of drug from niosomes during storage. The intraocular pressure (IOP) lowering activity of acetazolamide niosomal formulations in rabbits was measured using ShiØtz tonometer. Histological examination for the corneal tissues of rabbits receiving niosomal formulations was carried out for assessment of the ocular irritancy of niosomes. The results showed that the type of surfactant, cholesterol content and the method of preparation altered the entrapment efficiency and drug release rate from niosomes. Higher entrapment efficiency was obtained with multilamellar niosomes prepared from Span 60 and cholesterol in a 7:6 molar ratio. Niosomal formulations have shown a fairly high retention of acetazolamide inside the vesicles (approximately 75%) at a refrigerated temperature up to a period of 3 months. Each of the tested acetazolamide niosomes prepared by either method produced a significant decrease in IOP compared to the solution of free drug and plain niosomes. Multilamellar acetazolamide niosomes formulated with Span 60 and cholesterol in a 7:4 molar ratio were found to be the most effective and showed prolonged decrease in IOP. Histological examination of corneal tissues after instillation of niosomal formulation for 40 days showed slight irritation in the substantia propria of the eye which is reversible and no major changes in tissues were observed.
                Bookmark

                Author and article information

                Journal
                Arabian Journal of Chemistry
                Arabian Journal of Chemistry
                Elsevier BV
                18785352
                June 2023
                June 2023
                : 16
                : 6
                : 104704
                Article
                10.1016/j.arabjc.2023.104704
                bfd4aafd-5340-4633-8798-9ace429aab32
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article