Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Assessment of antral grinding of a model solid meal with echo-planar imaging.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mathematical modeling of how physical factors alter gastric emptying is limited by lack of precise measures of the forces exerted on gastric contents. We have produced agar gel beads (diameter 1.27 cm) with a range of fracture strengths (0.15-0.90 N) and assessed their breakdown by measuring their half-residence time (RT(1/2)) using magnetic resonance imaging. Beads were ingested either with a high (HV)- or low (LV)-viscosity liquid nutrient meal. With the LV meal, RT(1/2) was similar for bead strengths ranging from 0.15 to 0.65 N but increased from 22 +/- 2 min (bead strength <0.65 N) to 65 +/- 12 min for bead strengths >0.65 N. With the HV meal, emptying of the harder beads was accelerated. The sense of fullness after ingesting the LV meal correlated linearly (correlation coefficient = 0.99) with gastric volume and was independently increased by the harder beads, which were associated with an increased antral diameter. We conclude that the maximum force exerted by the gastric antrum is close to 0.65 N and that gastric sieving is impaired by HV meals.

          Related collections

          Author and article information

          Journal
          Am. J. Physiol. Gastrointest. Liver Physiol.
          American journal of physiology. Gastrointestinal and liver physiology
          American Physiological Society
          0193-1857
          0193-1857
          May 2001
          : 280
          : 5
          Affiliations
          [1 ] Magnetic Resonance Center, School of Physics and Astronomy, Nottingham NG7 2RD, UK.
          Article
          10.1152/ajpgi.2001.280.5.G844
          11292591
          bfe76b2b-10c7-4cd3-a49b-cdf64999b4e2
          History

          Comments

          Comment on this article