Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Upgrading methane fermentation of food waste by using a hollow fiber type anaerobic membrane bioreactor

      , , ,
      Bioresource Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, the effects of organic loading rates (OLRs) on anaerobic fermentation of food waste were comprehensively evaluated using a hollow fiber type anaerobic membrane bioreactor (HF-AnMBR). Compared to other OLRs, biogas production rate was highest at the OLR of 9.72 g-COD/L/d, the organic matter removal efficiency was also significantly higher and VFA was in lower concentration. COD conversion efficiency was as high as 92.9%, 85.3%, 82.6% and 80.4% at OLRs of 2.43, 4.86, 7.29 and 9.72 g-COD/L/d, respectively. The major membrane fouling was caused by organic pore blocking, accounting for 59.6% of the total hydraulic resistance after long-term operation. The performance of HF-AnMBR was compared with a continuously stirred tank reactor (CSTR) and a self-agitated reactor (SAR). The higher operation OLRs, COD conversion efficiency and better effluent quality achieved by the HF-AnMBR are evidences of a significant improvement in reactor performance compared to CSTR and SAR.

          Related collections

          Author and article information

          Journal
          Bioresource Technology
          Bioresource Technology
          Elsevier BV
          09608524
          November 2018
          November 2018
          : 267
          : 386-394
          Article
          10.1016/j.biortech.2018.07.045
          30031277
          c009af8f-9bbe-4049-a0c4-234683657ddb
          © 2018

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article