154
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An easy, simple inexpensive test for the specific detection of Pectobacterium carotovorum subsp . carotovorum based on sequence analysis of the pmrA gene

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The species Pectobacterium carotovorum includes a diverse subspecies of bacteria that cause disease on a wide variety of plants. In Morocco, approximately 95% of the P. carotovorum isolates from potato plants with tuber soft rot are P. carotovorum subsp . carotovorum. However, identification of this pathogen is not always related to visual disease symptoms. This is especially true when different pathogen cause similar diseases on potato, citing as an example, P. carotovorum, P. atrosepticum and P. wasabiae. Numerous conventional methods were used to characterize Pectobacterium spp., including biochemical assays, specific PCR-based tests, and construction of phylogenetic trees by using gene sequences. In this study, an alternative method is presented using a gene linked to pathogenicity, in order to allow accuracy at subspecies level. The pmrA gene (response regulator) has been used for identification and analysis of the relationships among twenty nine Pectobacterium carotovorum subsp. carotovorum and other Pectobacterium subspecies.

          Results

          Phylogenetic analyses of pmrA sequences compared to ERIC-PCR and 16S rDNA sequencing, demonstrated that there is considerable genetic diversity in P. carotovorum subsp. carotovorum strains, which can be divided into two distinct groups within the same clade.

          Conclusions

          pmrA sequence analysis is likely to be a reliable tool to identify the subspecies Pectobacterium carotovorum subsp . carotovorum and estimate their genetic diversity.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Two-component signal transduction.

          Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein. The histidine protein kinase, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the response regulator protein. Phosphorylation induces a conformational change in the regulatory domain that results in activation of an associated domain that effects the response. The basic scheme is highly adaptable, and numerous variations have provided optimization within specific signaling systems. The domains of two-component proteins are modular and can be integrated into proteins and pathways in a variety of ways, but the core structures and activities are maintained. Thus detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Host range and molecular phylogenies of the soft rot enterobacterial genera pectobacterium and dickeya.

            ABSTRACT Pectobacterium and Dickeya spp. are related broad-host-range entero-bacterial pathogens of angiosperms. A review of the literature shows that these genera each cause disease in species from at least 35% of angiosperm plant orders. The known host ranges of these pathogens partially overlap and, together, these two genera are pathogens of species from 50% of angiosperm plant orders. Notably, there are no reported hosts for either genus in the eudicots clade and no reported Dickeya hosts in the magnoliids or eurosids II clades, although Pectobacterium spp. are pathogens of at least one plant species in the magnoliids and at least one in each of the three eurosids II plant orders. In addition, Dickeya but not Pectobacterium spp. have been reported on a host in the rosids clade and, unlike Pectobacterium spp., have been reported on many Poales species. Natural disease among nonangiosperms has not been reported for either genus. Phylogenetic analyses of sequences concatenated from regions of seven housekeeping genes (acnA, gapA, icdA, mdh, mtlD, pgi, and proA) from representatives of these genera demonstrated that Dickeya spp. and the related tree pathogens, the genus Brenneria, are more diverse than Pectobacterium spp. and that the Pectobacterium strains can be divided into at least five distinct clades, three of which contain strains from multiple host plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov.

              A collection of 75 strains of Pectobacterium chrysanthemi (including all biovars and pathovars) and the type strains of Brenneria paradisiaca (CFBP 4178(T)) and Pectobacterium cypripedii (CFBP 3613(T)) were studied by DNA-DNA hybridization, numerical taxonomy of 121 phenotypic characteristics, serology and 16S rRNA gene-based phylogenetic analyses. From analysis of 16S rRNA gene sequences, it was deduced that P. chrysanthemi strains and B. paradisiaca CFBP 4178(T) formed a clade distinct from the genera Pectobacterium and Brenneria; therefore, it is proposed to transfer all the strains to a novel genus, Dickeya gen. nov. By DNA-DNA hybridization, the strains of P. chrysanthemi were distributed among six genomic species: genomospecies 1 harbouring 16 strains of biovar 3 and four strains of biovar 8, genomospecies 2 harbouring 16 strains of biovar 3, genomospecies 3 harbouring two strains of biovar 6 and five strains of biovar 5, genomospecies 4 harbouring five strains of biovar 2, genomospecies 5 harbouring six strains of biovar 1, four strains of biovar 7 and five strains of biovar 9 and genomospecies 6 harbouring five strains of biovar 4 and B. paradisiaca CFBP 4178(T). Two strains of biovar 3 remained unclustered. Biochemical criteria, deduced from a numerical taxonomic study of phenotypic characteristics, and serological reactions allowed discrimination of the strains belonging to the six genomic species. Thus, it is proposed that the strains clustered in these six genomic species be assigned to the species Dickeya zeae sp. nov. (type strain CFBP 2052(T)=NCPPB 2538(T)), Dickeya dadantii sp. nov. (type strain CFBP 1269(T)=NCPPB 898(T)), Dickeya chrysanthemi comb. nov. (subdivided into two biovars, bv. chrysanthemi and bv. parthenii), Dickeya dieffenbachiae sp. nov. (type strain CFBP 2051(T)=NCPPB 2976(T)), Dickeya dianthicola sp. nov. (type strain CFBP 1200(T)=NCPPB 453(T)) and Dickeya paradisiaca comb. nov., respectively.
                Bookmark

                Author and article information

                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central
                1471-2180
                2013
                29 July 2013
                : 13
                : 176
                Affiliations
                [1 ]Laboratoire de Virologie, Microbiologie et Qualité /Eco Toxicologie et Biodiversité, Université Hassan II Mohammedia – Casablanca, Faculté des Sciences et Techniques - Mohammedia - FSTM, BP 146, Mohammedia 20650, Maroc
                [2 ]UATRS – CNRST, Angle Allal Fassi / FAR, Hay Riad 10 000, Rabat, Maroc
                [3 ]Université Paris Diderot, Sorbonne Paris Cité, LEM Institut de Biologie des Plantes, 91405 Orsay, France
                Article
                1471-2180-13-176
                10.1186/1471-2180-13-176
                3765535
                23890050
                c0373b49-9eea-4676-ad4e-be34cca94a4f
                Copyright ©2013 Kettani-Halabi et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 September 2012
                : 23 July 2013
                Categories
                Research Article

                Microbiology & Virology
                pmra gene,pectobacterium carotovorum,potato tuber,soft rot disease,genetic diversity,phylogenetic analysis

                Comments

                Comment on this article