5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A minimal model of inflation and dark radiation

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We show that a minimal extension of the Standard Model including a new complex scalar field can explain inflation and the observed effective number of neutrinos. The real part of the singlet plays the role of the inflaton field, while the Goldstone boson emerging from the spontaneous symmetry breaking of a global \(U(1)\) symmetry contributes to dark radiation and increases the effective number of neutrino species by \(0.3\) over the Standard Model value. After detailing the phenomenology of the model, we find that the predicted inflationary observables are in agreement with the current bounds, once the dark radiation component is allowed, both within the metric and Palatini formulation of non-minimally coupled gravity.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Planck 2013 results. XVI. Cosmological parameters

          We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Inflation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Particle Physics Models of Inflation and the Cosmological Density Perturbation

              This is a review of particle-theory models of inflation, and of their predictions for the primordial density perturbation that is thought to be the origin of structure in the Universe. It contains mini-reviews of the relevant observational cosmology, of elementary field theory and of supersymmetry, that may be of interest in their own right. The spectral index \(n(k)\), specifying the scale-dependence of the spectrum of the curvature perturbation, will be a powerful discriminator between models, when it is measured by Planck with accuracy \(\Delta n\sim 0.01\). The usual formula for \(n\) is derived, as well as its less familiar extension to the case of a multi-component inflaton; in both cases the key ingredient is the separate evolution of causally disconnected regions of the Universe. Primordial gravitational waves will be an even more powerful discriminator if they are observed, since most models of inflation predict that they are completely negligible. We treat in detail the new wave of models, which are firmly rooted in modern particle theory and have supersymmetry as a crucial ingredient. The review is addressed to both astrophysicists and particle physicists, and each section is fairly homogeneous regarding the assumed background knowledge.
                Bookmark

                Author and article information

                Journal
                30 October 2018
                Article
                1810.12689
                c0ffaf36-80be-4480-a780-943e12f03db8

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                9 pages, 1 figure
                hep-ph astro-ph.CO

                Cosmology & Extragalactic astrophysics,High energy & Particle physics
                Cosmology & Extragalactic astrophysics, High energy & Particle physics

                Comments

                Comment on this article