13
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Network Pharmacology-Based Investigation to the Pharmacodynamic Material Basis and Mechanisms of the Anti-Inflammatory and Anti-Viral Effect of Isatis indigotica

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Isatis indigotica ( Ii) is a cruciferous herb that is widely distributed in China, and its roots and leaves have been used in two renowned antipyretic detoxicate crude drugs in Chinese Pharmacopoeia, Radix ( R) and Folium ( F) Isatidis. However, the pharmacodynamic material basis and underlying mechanisms of the herbal efficacy remained to be elucidated.

          Methods

          Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was adopted for the chemical profiling of R and F Isatidis. The active ingredients were screened out through the prediction of gastrointestinal absorption and druglikeness analysis using SwissADME. A herb-ingredient-target network was constructed through target prediction of the herbal active ingredients and anti-inflammation or anti-viral properties, followed by protein–protein interaction analysis. Then, the potential relevant signaling pathways were predicted by pathway enrichment. Finally, for verification, RAW 264.7 cell line was adopted to examine the anti-inflammatory and anti-viral activities of 6 representative ingredients in Ii.

          Results

          Seventy-three compounds have been identified from Ii through UPLC-Q-TOF-MS. A total of 17 potential active ingredients were screened through pharmacokinetics and drug-likeness evaluation using SwissADME. It was shown that key targets might include TNF, AKT1, SRC, IL2, CASP9, and CASP3 in our herb-ingredient-target network, and isovitexin, a flavonoid, tended to participate in the inflammatory response, indoles were more likely to affect the cell proliferation processes, and lignans might have a broader affinity to key targets than the other active ingredients, such as regulating immune system (targeting IL-2) and PI3K-Akt signaling pathway. In vitro, indigo and secoisolariciresinol diglucoside markedly reduced TNF-α expression in Poly (I: C)-incubated cells. Isovitexin significantly inhibited TNF-α expression, and isatin treatment markedly reduced IL-1β expression in LPS-incubated cells.

          Conclusion

          As the pharmacodynamics material basis of Ii, indoles, lignans, and flavonoids are believed to confer beneficial properties through various cellular aspects with multiple signaling pathways involved.

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

          DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules

            To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses.

              GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It automatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. VarElect's capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. © 2016 by John Wiley & Sons, Inc.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                20 July 2021
                2021
                : 15
                : 3193-3206
                Affiliations
                [1 ]Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine , Shanghai, 201203, People’s Republic of China
                [2 ]Department of Pharmacy, Changzheng Hospital, Second Military Medical University , Shanghai, 200003, People’s Republic of China
                Author notes
                Correspondence: Wansheng Chen Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine , Shanghai, 201203, People’s Republic of ChinaTel +64 021 81886182 Email chenwansheng@shutcm.edu.cn
                Xia Tao Department of Pharmacy, Shanghai Changzheng Hospital, Second Military Medical University , Shanghai, 200003, People’s Republic of ChinaTel +64 021 81886182 Email taoxia2003@126.com
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0003-1250-5156
                Article
                316701
                10.2147/DDDT.S316701
                8312626
                34321868
                c1097f64-6ecd-4230-9f15-d54a9807f4a1
                © 2021 Deng et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 21 April 2021
                : 28 June 2021
                Page count
                Figures: 6, Tables: 2, References: 55, Pages: 14
                Funding
                Funded by: National Key R&D Program of China;
                Funded by: Natural Science Foundation of China, open-funder-registry 10.13039/501100001809;
                Funded by: Shanghai Pujiang Program;
                Funded by: Chinese medicine resources;
                This research was funded by National Key R&D Program of China (grant 2018YFC1707304), Natural Science Foundation of China (grant 81903745), Shanghai Pujiang Program (grant 19PJ1409300) and the Key Project at the central government level: The ability establishment of sustainable use for valuable Chinese medicine resources (grant 2060302).
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                isatis indigotica,uplc-q-tof-ms,network analysis,bioassay analysis

                Comments

                Comment on this article