Blog
About

802
views
0
recommends
+1 Recommend
0 collections
    48
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources

      , ,

      Nature Protocols

      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.

          Related collections

          Most cited references 7

          • Record: found
          • Abstract: found
          • Article: not found

          FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes.

          We present a simple but powerful procedure to extract Gene Ontology (GO) terms that are significantly over- or under-represented in sets of genes within the context of a genome-scale experiment (DNA microarray, proteomics, etc.). Said procedure has been implemented as a web application, FatiGO, allowing for easy and interactive querying. FatiGO, which takes the multiple-testing nature of statistical contrast into account, currently includes GO associations for diverse organisms (human, mouse, fly, worm and yeast) and the TrEMBL/Swissprot GOAnnotations@EBI correspondences from the European Bioinformatics Institute.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identifying biological themes within lists of genes with EASE.

            EASE is a customizable software application for rapid biological interpretation of gene lists that result from the analysis of microarray, proteomics, SAGE and other high-throughput genomic data. The biological themes returned by EASE recapitulate manually determined themes in previously published gene lists and are robust to varying methods of normalization, intensity calculation and statistical selection of genes. EASE is a powerful tool for rapidly converting the results of functional genomics studies from 'genes' to 'themes'.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ontological analysis of gene expression data: current tools, limitations, and open problems.

              Independent of the platform and the analysis methods used, the result of a microarray experiment is, in most cases, a list of differentially expressed genes. An automatic ontological analysis approach has been recently proposed to help with the biological interpretation of such results. Currently, this approach is the de facto standard for the secondary analysis of high throughput experiments and a large number of tools have been developed for this purpose. We present a detailed comparison of 14 such tools using the following criteria: scope of the analysis, visualization capabilities, statistical model(s) used, correction for multiple comparisons, reference microarrays available, installation issues and sources of annotation data. This detailed analysis of the capabilities of these tools will help researchers choose the most appropriate tool for a given type of analysis. More importantly, in spite of the fact that this type of analysis has been generally adopted, this approach has several important intrinsic drawbacks. These drawbacks are associated with all tools discussed and represent conceptual limitations of the current state-of-the-art in ontological analysis. We propose these as challenges for the next generation of secondary data analysis tools.
                Bookmark

                Author and article information

                Journal
                Nature Protocols
                Nat Protoc
                Springer Science and Business Media LLC
                1754-2189
                1750-2799
                January 2009
                December 18 2008
                January 2009
                : 4
                : 1
                : 44-57
                Article
                10.1038/nprot.2008.211
                19131956
                © 2009

                Comments

                Comment on this article