8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiation Tolerance in Tardigrades: Current Knowledge and Potential Applications in Medicine

      review-article
      Cancers
      MDPI
      anhydrobiosis, cancer, cryptobiosis, desiccation tolerance, DNA repair, oxidative stress, radiation tolerance, tardigrades

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tardigrades represent a phylum of very small aquatic animals in which many species have evolved adaptations to survive under extreme environmental conditions, such as desiccation and freezing. Studies on several species have documented that tardigrades also belong to the most radiation-tolerant animals on Earth. This paper gives an overview of our current knowledge on radiation tolerance of tardigrades, with respect to dose-responses, developmental stages, and different radiation sources. The molecular mechanisms behind radiation tolerance in tardigrades are still largely unknown, but omics studies suggest that both mechanisms related to the avoidance of DNA damage and mechanisms of DNA repair are involved. The potential of tardigrades to provide knowledge of importance for medical sciences has long been recognized, but it is not until recently that more apparent evidence of such potential has appeared. Recent studies show that stress-related tardigrade genes may be transfected to human cells and provide increased tolerance to osmotic stress and ionizing radiation. With the recent sequencing of the tardigrade genome, more studies applying tardigrade omics to relevant aspects of human medicine are expected. In particular, the cancer research field has potential to learn from studies on tardigrades about molecular mechanisms evolved to maintain genome integrity.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Hsp70 chaperones: Cellular functions and molecular mechanism

          Abstract. Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of vitrification in anhydrobiosis.

            Numerous organisms are capable of surviving more or less complete dehydration. A common feature in their biochemistry is that they accumulate large amounts of disaccharides, the most common of which are sucrose and trehalose. Over the past 20 years, we have provided evidence that these sugars stabilize membranes and proteins in the dry state, most likely by hydrogen bonding to polar residues in the dry macromolecular assemblages. This direct interaction results in maintenance of dry proteins and membranes in a physical state similar to that seen in the presence of excess water. An alternative viewpoint has been proposed, based on the fact that both sucrose and trehalose form glasses in the dry state. It has been suggested that glass formation (vitrification) is in itself sufficient to stabilize dry biomaterials. In this review we present evidence that, although vitrification is indeed required, it is not in itself sufficient. Instead, both direct interaction and vitrification are required. Special properties have often been claimed for trehalose in this regard. In fact, trehalose has been shown by many workers to be remarkably (and sometimes uniquely) effective in stabilizing dry or frozen biomolecules, cells, and tissues. Others have not observed any such special properties. We review evidence here showing that trehalose has a remarkably high glass-transition temperature (Tg). It is not anomalous in this regard because it lies at the end of a continuum of sugars with increasing Tg. However, it is unusual in that addition of small amounts of water does not depress Tg, as in other sugars. Instead, a dihydrate crystal of trehalose forms, thereby shielding the remaining glassy trehalose from effects of the added water. Thus under less than ideal conditions such as high humidity and temperature, trehalose does indeed have special properties, which may explain the stability and longevity of anhydrobiotes that contain it. Further, it makes this sugar useful in stabilization of biomolecules of use in human welfare.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The HSP70 family and cancer.

              The HSP70 family of heat shock proteins consists of molecular chaperones of approximately 70kDa in size that serve critical roles in protein homeostasis. These adenosine triphosphatases unfold misfolded or denatured proteins and can keep these proteins in an unfolded, folding-competent state. They also protect nascently translating proteins, promote the cellular or organellar transport of proteins, reduce proteotoxic protein aggregates and serve general housekeeping roles in maintaining protein homeostasis. The HSP70 family is the most conserved in evolution, and all eukaryotes contain multiple members. Some members of this family serve specific organellar- or tissue-specific functions; however, in many cases, these members can function redundantly. Overall, the HSP70 family of proteins can be thought of as a potent buffering system for cellular stress, either from extrinsic (physiological, viral and environmental) or intrinsic (replicative or oncogenic) stimuli. As such, this family serves a critical survival function in the cell. Not surprisingly, cancer cells rely heavily on this buffering system for survival. The overwhelming majority of human tumors overexpress HSP70 family members, and expression of these proteins is typically a marker for poor prognosis. With the proof of principle that inhibitors of the HSP90 chaperone have emerged as important anticancer agents, intense focus has now been placed on the potential for HSP70 inhibitors to assume a role as a significant chemotherapeutic avenue. In this review, the history, regulation, mechanism of action and role in cancer of the HSP70 family are reviewed. Additionally, the promise of pharmacologically targeting this protein for cancer therapy is addressed.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                09 September 2019
                September 2019
                : 11
                : 9
                : 1333
                Affiliations
                Department of Environmental Science and Bioscience, Kristianstad University, 291 88 Kristianstad, Sweden; ingemar.jonsson@ 123456hkr.se ; Tel.: +46-44-250-3429
                Author information
                https://orcid.org/0000-0002-1732-0372
                Article
                cancers-11-01333
                10.3390/cancers11091333
                6770827
                31505739
                c10c7426-3dcf-4aaf-965d-1303537287e0
                © 2019 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 August 2019
                : 06 September 2019
                Categories
                Review

                anhydrobiosis,cancer,cryptobiosis,desiccation tolerance,dna repair,oxidative stress,radiation tolerance,tardigrades

                Comments

                Comment on this article