2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Treatment Modalities for Calcified Coronary Artery Disease: A Review Article Comparing Novel Intravascular Lithotripsy and Traditional Rotational Atherectomy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The coronary artery calcium score is considered the most useful marker for predicting coronary events. The high score reflects heavy calcification in the vessel, which is more challenging to treat with the percutaneous intervention (PCI). To prepare this type of heavily calcified lesion intravascular lithotripsy (IVL) technology can be used prior to PCI, which is based on the concept of converting electrical energy into mechanical energy. It harmlessly and selectively disrupts both the shallow and deep deposits of calcium. The balloon-based catheters of this system emit sonic waves that transfer to the adjacent tissue resulting in improvement in vessel compliance with the slightest soft tissue loss. Therefore, making the treatment of calcified lesions more feasible, effective, and also simplify complex lesions. The lesions considered for lithotripsy-enhanced balloon dilation include calcified coronary lesions and peripheral vasculature lesions. This article reviews the use of IVL in calcified coronary artery disease, its advantages, and disadvantages while comparing it with other techniques like high-pressure balloons and rotational atherectomy devices. A thorough search of databases like PubMed and Google Scholar was performed, which uncovered 35 peer review articles. Keywords utilized in the data search were calcified coronary artery disease, coronary lithotripsy, calcification, and calcified atherosclerotic plaque. According to rotational atherectomy and intravascular lithotripsy trials, the latter was safer, mainly by decreasing atheromatous embolization risk. Deciphering these studies, it seems like IVL is better at parameters like procedural and clinical success rate, acute lumen gain, and less residual stenosis except in-hospital major adverse cardiovascular events (MACE), which was better in rotational atherectomy (RA). However, when lesion crossings are present, the atherectomy technique is still considered as first-line therapy. In clinical practice, despite these encouraging data for treating calcified lesions, IVL is grossly underutilized because of substantial costs and perceived significant procedural risk effects on the cardiac rhythm like causing 'shock topics' and asynchronous cardiac pacing. More longer-term clinical data and extensive researches are required to validate its safety and efficiency.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Coronary Artery Calcification: From Mechanism to Molecular Imaging.

          Vascular calcification is a hallmark of atherosclerosis. The location, density, and confluence of calcification may change portions of the arterial conduit to a noncompliant structure. Calcifications may also seed the cap of a thin cap fibroatheroma, altering tensile forces on the cap and rendering the lesion prone to rupture. Many local and systemic factors participate in this process, including hyperlipidemia, ongoing inflammation, large necrotic cores, and diabetes. Vascular cells can undergo chondrogenic or osteogenic differentiation, causing mineralization of membranous bone and formation of endochondral bone. Calcifying vascular cells are derived from local smooth muscle cells and circulating hematopoietic stem cells (especially in intimal calcification). Matrix vesicles in the extracellular space of the necrotic core serve as a nidus for calcification. Although coronary calcification is a marker of coronary atheroma, dense calcification (>400 HU) is usually associated with stable plaques. Conversely, microcalcification (often also referred to as spotty calcification) is more commonly an accompaniment of vulnerable plaques. Recent studies have suggested that microcalcification in the fibrous cap may increase local tissue stress (depending on the proximity of one microcalcific locus to another, and the orientation of the microcalcification in reference to blood flow), resulting in plaque instability. It has been proposed that positron emission tomography imaging with sodium fluoride may identify early calcific deposits and hence high-risk plaques.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-speed rotational atherectomy before paclitaxel-eluting stent implantation in complex calcified coronary lesions: the randomized ROTAXUS (Rotational Atherectomy Prior to Taxus Stent Treatment for Complex Native Coronary Artery Disease) trial.

            This study sought to determine the effect of rotational atherectomy (RA) on drug-eluting stent (DES) effectiveness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial.

              Percutaneous coronary intervention (PCI) is most commonly guided by angiography alone. Intravascular ultrasound (IVUS) guidance has been shown to reduce major adverse cardiovascular events (MACE) after PCI, principally by resulting in a larger postprocedure lumen than with angiographic guidance. Optical coherence tomography (OCT) provides higher resolution imaging than does IVUS, although findings from some studies suggest that it might lead to smaller luminal diameters after stent implantation. We sought to establish whether or not a novel OCT-based stent sizing strategy would result in a minimum stent area similar to or better than that achieved with IVUS guidance and better than that achieved with angiography guidance alone.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                12 October 2020
                October 2020
                : 12
                : 10
                : e10922
                Affiliations
                [1 ] Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
                [2 ] Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
                [3 ] Internal Medicine: Critical Care, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
                Author notes
                Article
                10.7759/cureus.10922
                7657441
                33194488
                c11f7a4b-f3f3-4fbd-8c74-87e9f00a3a51
                Copyright © 2020, Kaul et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 September 2020
                : 12 October 2020
                Categories
                Cardiology
                Internal Medicine

                intravascular lithotripsy,rotational atherectomy,calcified plaque,cad,pad,rotaxus,rotablator,coronary artery intervention

                Comments

                Comment on this article