17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tumor necrosis factor (TNF) receptor-1 (TNFp55) signal transduction and macrophage-derived soluble TNF are crucial for nitric oxide-mediated Trypanosoma congolense parasite killing.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Control of Trypanosoma congolense infections requires an early cell-mediated immune response. To unravel the role of tumor necrosis factor (TNF) in this process, 6 different T. congolense strains were used in 6 different gene-deficient mouse models that included TNF(-/-), TNF receptor-1 (TNFp55)(-/-), and TNF receptor-2 (TNFp75)(-/-) mice, 2 cell type-specific TNF(-/-) mice, as well as TNF-knock-in mice that expressed only membrane-bound TNF. Our results indicate that soluble TNF produced by macrophages/neutrophils and TNFp55 signaling are essential and sufficient to control parasitemia. The downstream mechanism in the control of T. congolense infection depends on inducible nitric oxide synthase activation in the liver. Such a role for nitric oxide is corroborated ex vivo, because the inhibitor N(G)-monomethyl-l-arginine blocks the trypanolytic activity of the adherent liver cell population, whereas exogenous interferon- gamma that stimulates nitric oxide production enhances parasite killing. In conclusion, the control of T. congolense infection depends on macrophage/neutrophil-derived soluble TNF and intact TNFp55 signaling, which induces trypanolytic nitric oxide.

          Related collections

          Author and article information

          Journal
          J Infect Dis
          The Journal of infectious diseases
          University of Chicago Press
          0022-1899
          0022-1899
          Sep 15 2007
          : 196
          : 6
          Affiliations
          [1 ] Department of Molecular and Cellular Recognition, Flanders Institute for Biotechnology, Brussels, Belgium. stemagez@vub.ac.be
          Article
          JID38041
          10.1086/520815
          17703428
          c12f5a83-348c-4b48-9ebe-8452b5603e54
          History

          Comments

          Comment on this article