Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review

      , , , , , , , ,
      Journal of Composites Science
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          At present, the rapid accumulation of heat and the heat dissipation of electronic equipment and related components are important reasons that restrict the miniaturization, high integration, and high power of electronic equipment. It seriously affects the performance and life of electronic devices. Hence, improving the thermal conductivity of polymer composites (TCPCs) is the key to solving this problem. Compared with manufacturing intrinsic thermally conductive polymer composites, the method of filling the polymer matrix with thermally conductive fillers can better-enhance the thermal conductivity (λ) of the composites. This review starts from the thermal conduction mechanism and describes the factors affecting the λ of polymer composites, including filler type, filler morphology and distribution, and the functional surface treatment of fillers. Next, we introduce the preparation methods of filled thermally conductive polymer composites with different filler types. In addition, some commonly used thermal-conductivity theoretical models have been introduced to better-analyze the thermophysical properties of polymer composites. We discuss the simulation of λ and the thermal conduction process of polymer composites based on molecular dynamics and finite element analysis methods. Meanwhile, we briefly introduce the application of polymer composites in thermal management. Finally, we outline the challenges and prospects of TCPCs.

          Related collections

          Most cited references209

          • Record: found
          • Abstract: not found
          • Article: not found

          Fast Parallel Algorithms for Short-Range Molecular Dynamics

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Superior thermal conductivity of single-layer graphene.

            We report the measurement of the thermal conductivity of a suspended single-layer graphene. The room temperature values of the thermal conductivity in the range approximately (4.84+/-0.44)x10(3) to (5.30+/-0.48)x10(3) W/mK were extracted for a single-layer graphene from the dependence of the Raman G peak frequency on the excitation laser power and independently measured G peak temperature coefficient. The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction. The superb thermal conduction property of graphene is beneficial for the proposed electronic applications and establishes graphene as an excellent material for thermal management.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review

                Bookmark

                Author and article information

                Contributors
                Journal
                JCSOGF
                Journal of Composites Science
                J. Compos. Sci.
                MDPI AG
                2504-477X
                December 2020
                November 29 2020
                : 4
                : 4
                : 180
                Article
                10.3390/jcs4040180
                c154819b-1649-4149-b2fa-15207a75af09
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article