8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PROMIS, global analysis of PROtein–metabolite interactions using size separation in Arabidopsis thaliana

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small molecules not only represent cellular building blocks and metabolic intermediates, but also regulatory ligands and signaling molecules that interact with proteins. Although these interactions affect cellular metabolism, growth, and development, they have been largely understudied. Herein, we describe a method, which we named PROtein– Metabolite Interactions using Size separation (PROMIS), that allows simultaneous, global analysis of endogenous protein–small molecule and of protein–protein complexes. To this end, a cell-free native lysate from Arabidopsis thaliana cell cultures was fractionated by size-exclusion chromatography, followed by quantitative metabolomic and proteomic analyses. Proteins and small molecules showing similar elution behavior, across protein-containing fractions, constituted putative interactors. Applying PROMIS to an A. thaliana extract, we ascertained known protein–protein (PPIs) and protein–metabolite (PMIs) interactions and reproduced binding between small-molecule protease inhibitors and their respective proteases. More importantly, we present examples of two experimental strategies that exploit the PROMIS dataset to identify novel PMIs. By looking for similar elution behavior of metabolites and enzymes belonging to the same biochemical pathways, we identified putative feedback and feed-forward regulations in pantothenate biosynthesis and the methionine salvage cycle, respectively. By combining PROMIS with an orthogonal affinity purification approach, we identified an interaction between the dipeptide Tyr–Asp and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. In summary, we present proof of concept for a powerful experimental tool that enables system-wide analysis of PMIs and PPIs across all biological systems. The dataset obtained here comprises nearly 140 metabolites and 5000 proteins, which can be mined for putative interactors.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Recognition and processing of ubiquitin-protein conjugates by the proteasome.

          The proteasome is an intricate molecular machine, which serves to degrade proteins following their conjugation to ubiquitin. Substrates dock onto the proteasome at its 19-subunit regulatory particle via a diverse set of ubiquitin receptors and are then translocated into an internal chamber within the 28-subunit proteolytic core particle (CP), where they are hydrolyzed. Substrate is threaded into the CP through a narrow gated channel, and thus translocation requires unfolding of the substrate. Six distinct ATPases in the regulatory particle appear to form a ring complex and to drive unfolding as well as translocation. ATP-dependent, degradation-coupled deubiquitination of the substrate is required both for efficient substrate degradation and for preventing the degradation of the ubiquitin tag. However, the proteasome also contains deubiquitinating enzymes (DUBs) that can remove ubiquitin before substrate degradation initiates, thus allowing some substrates to dissociate from the proteasome and escape degradation. Here we examine the key elements of this molecular machine and how they cooperate in the processing of proteolytic substrates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data

            MetaboLights (http://www.ebi.ac.uk/metabolights) is the first general-purpose, open-access repository for metabolomics studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Metabolomic profiling is an important tool for research into biological functioning and into the systemic perturbations caused by diseases, diet and the environment. The effectiveness of such methods depends on the availability of public open data across a broad range of experimental methods and conditions. The MetaboLights repository, powered by the open source ISA framework, is cross-species and cross-technique. It will cover metabolite structures and their reference spectra as well as their biological roles, locations, concentrations and raw data from metabolic experiments. Studies automatically receive a stable unique accession number that can be used as a publication reference (e.g. MTBLS1). At present, the repository includes 15 submitted studies, encompassing 93 protocols for 714 assays, and span over 8 different species including human, Caenorhabditis elegans, Mus musculus and Arabidopsis thaliana. Eight hundred twenty-seven of the metabolites identified in these studies have been mapped to ChEBI. These studies cover a variety of techniques, including NMR spectroscopy and mass spectrometry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Target identification using drug affinity responsive target stability (DARTS).

              Identifying the molecular targets for the beneficial or detrimental effects of small-molecule drugs is an important and currently unmet challenge. We have developed a method, drug affinity responsive target stability (DARTS), which takes advantage of a reduction in the protease susceptibility of the target protein upon drug binding. DARTS is universally applicable because it requires no modification of the drug and is independent of the mechanism of drug action. We demonstrate use of DARTS to identify known small-molecule-protein interactions and to reveal the eukaryotic translation initiation machinery as a molecular target for the longevity-enhancing plant natural product resveratrol. We envisage that DARTS will also be useful in global mapping of protein-metabolite interaction networks and in label-free screening of unlimited varieties of compounds for development as molecular imaging agents.
                Bookmark

                Author and article information

                Journal
                J Biol Chem
                J. Biol. Chem
                jbc
                jbc
                JBC
                The Journal of Biological Chemistry
                American Society for Biochemistry and Molecular Biology (11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A. )
                0021-9258
                1083-351X
                10 August 2018
                31 May 2018
                31 May 2018
                : 293
                : 32
                : 12440-12453
                Affiliations
                From the []Department Willmitzer, Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam and
                [§ ]MetaSysX GmbH, 14476 Potsdam, Germany
                Author notes
                [2 ] To whom correspondence should be addressed. E-mail: skirycz@ 123456mpimp-golm.mpg.de .
                [1]

                These authors contributed equally to this work.

                Edited by Joseph M. Jez

                Author information
                https://orcid.org/0000-0002-7627-7925
                Article
                RA118.003351
                10.1074/jbc.RA118.003351
                6093232
                29853640
                c16756fe-9cdc-4be4-ab8a-ad2ab4891107
                © 2018 Veyel et al.

                Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

                Author's Choice—Final version free via Creative Commons CC-BY license.

                History
                : 9 April 2018
                : 25 May 2018
                Categories
                Methods and Resources

                Biochemistry
                metabolomics,protein–protein interaction,proteomics,systems biology,chromatography,ligand-binding protein,protein–small molecule interactions,size-exclusion chromatography

                Comments

                Comment on this article