40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ILPC: simple chemometric tool supporting the design of ionic liquids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ionic liquids (ILs) found a variety of applications in today’s chemistry. Since their properties depend on the ions constituting particular ionic liquid, it is possible to synthetize IL with desired specification, dependently on its further function. However, this task is not trivial, since knowledge regarding the influence of particular ion on the property of concern is crucial. Therefore, there is a strong need for new, fast and inexpensive methods supporting the process of ionic liquids’ design, making it possible to predefine IL’s properties even before the synthesis.

          Results

          We have developed a simple tool (called Ionic Liquid PhysicoChemical predictor: ILPC) that allows for the simultaneous qualitative prediction of four physicochemical properties of ionic liquids: viscosity, n-octanol–water partition coefficient, solubility and enthalpy of fusion. By the means of Principal Component Analysis, we studied 172 ILs and defined distribution trends of those four properties, dependently on the ILs structures. We proved that the qualitative prediction of mentioned properties could be performed on the basis of most simple information we can deliver about ILs, which are their molecular formulas.

          Conclusions

          Created tool presented in this paper allows fast, pre-synthesis screening of ILs, with the omission of any experimental steps. It can be helpful in the process of designing ILs with preferred properties. We proved that the information encrypted in molecular formula of ionic liquid could be a valuable source of knowledge regarding the IL’s viscosity, n-octanol–water partition coefficient, solubility and enthalpy of fusion. Moreover, we proved that the influence of both ions, constituting the IL, on each of those four properties indicates same, additive trend.

          Graphical Abstract

          Schematic representation of ILPC performance - the exact position of the ionic liquid on the linear map is determined by its chemical structure

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13321-016-0152-4) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters

          Modern semiempirical methods are of sufficient accuracy when used in the modeling of molecules of the same type as used as reference data in the parameterization. Outside that subset, however, there is an abundance of evidence that these methods are of very limited utility. In an attempt to expand the range of applicability, a new method called PM7 has been developed. PM7 was parameterized using experimental and high-level ab initio reference data, augmented by a new type of reference data intended to better define the structure of parameter space. The resulting method was tested by modeling crystal structures and heats of formation of solids. Two changes were made to the set of approximations: a modification was made to improve the description of noncovalent interactions, and two minor errors in the NDDO formalism were rectified. Average unsigned errors (AUEs) in geometry and ΔH f for PM7 were reduced relative to PM6; for simple gas-phase organic systems, the AUE in bond lengths decreased by about 5 % and the AUE in ΔH f decreased by about 10 %; for organic solids, the AUE in ΔH f dropped by 60 % and the reduction was 33.3 % for geometries. A two-step process (PM7-TS) for calculating the heights of activation barriers has been developed. Using PM7-TS, the AUE in the barrier heights for simple organic reactions was decreased from values of 12.6 kcal/mol-1 in PM6 and 10.8 kcal/mol-1 in PM7 to 3.8 kcal/mol-1. The origins of the errors in NDDO methods have been examined, and were found to be attributable to inadequate and inaccurate reference data. This conclusion provides insight into how these methods can be improved. Electronic supplementary material The online version of this article (doi:10.1007/s00894-012-1667-x) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Energy applications of ionic liquids

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation.

              The alkyl chain length of 1-alkyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Rmim][(CF(3)SO(2))(2)N], R = methyl (m), ethyl (e), butyl (b), hexyl (C(6)), and octyl (C(8))) was varied to prepare a series of room-temperature ionic liquids (RTILs), and the thermal behavior, density, viscosity, self-diffusion coefficients of the cation and anion, and ionic conductivity were measured over a wide temperature range. The self-diffusion coefficient, viscosity, ionic conductivity, and molar conductivity change with temperature following the Vogel-Fulcher-Tamman equation, and the density shows a linear decrease. The pulsed-field-gradient spin-echo NMR method reveals a higher self-diffusion coefficient for the cation compared to that for the anion over a wide temperature range, even if the cationic radius is larger than that of the anion. The summation of the cationic and anionic diffusion coefficients for the RTILs follows the order [emim][(CF(3)SO(2))(2)N] > [mmim][(CF(3)SO(2))(2)N] > [bmim][(CF(3)SO(2))(2)N] > [C(6)mim][(CF(3)SO(2))(2)N] > [C(8)mim][(CF(3)SO(2))(2)N], which greatly contrasts to the viscosity data. The ratio of molar conductivity obtained from impedance measurements to that calculated by the ionic diffusivity using the Nernst-Einstein equation quantifies the active ions contributing to ionic conduction in the diffusion components, in other words, ionicity of the ionic liquids. The ratio decreases with increasing number of carbon atoms in the alkyl chain. Finally, a balance between the electrostatic and induction forces has been discussed in terms of the main contribution factor in determining the physicochemical properties.
                Bookmark

                Author and article information

                Contributors
                barycki@qsar.eu.org
                sosnowska@qsar.eu.org
                piotrowska@qsar.eu.org
                urbi@qsar.eu.org
                rybinska@qsar.eu.org
                grzonkowska@qsar.eu.org
                +48 58 523 52 48 , t.puzyn@qsar.eu.org
                Journal
                J Cheminform
                J Cheminform
                Journal of Cheminformatics
                Springer International Publishing (Cham )
                1758-2946
                19 August 2016
                19 August 2016
                2016
                : 8
                : 40
                Affiliations
                Laboratory of Environmental Chemometrics, Faculty of Chemistry, Institute for Environmental and Human Health Protection, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
                Article
                152
                10.1186/s13321-016-0152-4
                4991077
                27547246
                c18afc0e-cda0-4e98-8ec4-e7a3112536d6
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 19 January 2016
                : 5 August 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004281, Narodowe Centrum Nauki;
                Award ID: UMO-2012/05/E/NZ7/01148
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Chemoinformatics
                ionic liquids,pca,design,computational,physicochemical properties,chemometric
                Chemoinformatics
                ionic liquids, pca, design, computational, physicochemical properties, chemometric

                Comments

                Comment on this article