11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Protein Unfolding by Peptidylarginine Deiminase : SUBSTRATE SPECIFICITY AND STRUCTURAL RELATIONSHIPS OF THE NATURAL SUBSTRATES TRICHOHYALIN AND FILAGGRIN

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope.

          The cornified cell envelope (CE) is a 15-nm thick layer of insoluble protein deposited on the intracellular side of the cell membrane of terminally differentiated stratified squamous epithelia. The CE is thought to consist of a complex amalgam of proteins cross-linked by isodipeptide bonds formed by the action of transglutaminases, but little is known about how or in which order the several putative proteins are cross-linked together. In this paper, CEs purified from human foreskin epidermis were digested in two steps by proteinase K, which released as soluble peptides about 30% and then another 35% of CE protein mass, corresponding to approximately the outer third (cytoplasmic surface) and middle third, respectively. Following fractionation, 145 unique peptides containing two or more sequences cross-linked by isodipeptide bond(s) were sequenced. Based on these data, most (94% molar mass) of the outer third of CE structure consists of intra- and interchain cross-linked loricrin, admixed with SPR1 and SPR2 proteins as bridging cross-links between loricrin. Likewise, the middle third of CE structure consists largely of cross-linked loricrin and SPR proteins, but is mixed with the novel protein elafin which also forms cross-bridges between loricrin. In addition, cross-links involving loricrin and keratins 1, 2e, and 10 or filaggrin were recovered in both levels. The data establish for the first time that these several proteins are indeed cross-linked protein components of the CE structure. In addition, the data support a model for the intermediate to final stages of CE assembly: the proteins elafin, SPR1 and SPR2, and loricrin begin to be deposited on a preformed scaffold; later, elafin deposition decreases as loricrin and SPR accumulation continues to effect final assembly. The recovery of cross-links involving keratins further suggests that the subjacent cytoplasmic keratin intermediate filament-filaggrin network is anchored to the developing CE during these events.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design.

            Four alanine-based peptides were designed, synthesized, and tested by circular dichroism for alpha-helix formation in H2O. Each peptide has three glutamic/lysine residue pairs, is 16 or 17 amino acids long, and has blocked alpha-NH2 and alpha-COOH groups. In one set of peptides ("i+4"), the glutamic and lysine residues are spaced 4 residues or 1 residue apart. In the other set ("i+3"), the spacing is 3 or 2 residues. Within each of these sets, a pair of peptides was made in which the positions of the glutamic and lysine residues are reversed [Glu, Lys (E,K) vs. Lys, Glu (K,E)] in order to assess the interaction of the charged side chains with the helix dipole. Since the amino acid compositions of these peptides differ at most by a single alanine residue, differences in helicity are caused chiefly by the spacing and positions of the charged residues. The basic aim of this study was to test for helix stabilization by (Glu-, Lys+) ion pairs or salt bridges (H-bonded ion pairs). The results are as follows. (i) All four peptides show significant helix formation, and the stability of the alpha-helix does not depend on peptide concentration in the range studied. The best helix-former is (i+4)E,K, which shows approximately 80% helicity in 0.01 M NaCl at pH 7 and 0 degree C. (ii) The two i+4 peptides show more helix formation than the i+3 peptides. pH titration gives no evidence for helix stabilization by i+3 ion pairs. (iii) Surprisingly, the i+4 peptides form more stable helices than the i+3 peptides at extremes of pH (pH 2 and pH 12) as well as at pH 7. These results may be explained by helix stabilization through Glu-...Lys+ salt bridges at pH 7 and singly charged H bonds at pH 2 (Glu0...Lys+) and pH 12 (Glu-...Lys0). The reason why these links stabilize the alpha-helix more effectively in the i+4 than in the i+3 peptides is not known. (iv) Reversal of the positions of glutamic and lysine residues usually affects helix stability in the manner expected for interaction of these charged groups with the helix dipole. (v) alpha-Helix formation in these alanine-based peptides is enthalpy-driven, as is helix formation by the C-peptide of ribonuclease A.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of a class of cationic proteins that specifically interact with intermediate filaments.

              We describe a class of cationic structural proteins that associate specifically with intermediate filaments (IF) but not with other types of cytoskeletal proteins. These proteins, for which the term filaggrin is introduced, are isolated from the stratum corneum of mammalian epidermis. They are species-distinct proteins; for example, rat and mouse filaggrin have different molecular weights and amino acid compositions, but are nevertheless chemically and functionally ver similar. They interact in vitro with the IF several different types of cells to form large fibers or macrofibrils in which many IF are highly aligned in parallel arrays. Stoichiometric analyses suggest that two molecules of filaggrin bind to each three-chain building block of the IF, possibly by ionic interactions with the coiled-coil alpha-helical regions of the IF.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                November 29 1996
                November 29 1996
                November 29 1996
                : 271
                : 48
                : 30709-30716
                Article
                10.1074/jbc.271.48.30709
                c1982721-ac84-478f-8a30-9ce65baad5b9
                © 1996
                History

                Comments

                Comment on this article