50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NK Cells in Healthy Aging and Age-Associated Diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          NK cells exhibit the highest cytotoxic capacity within the immune system. Alteration of their number or functionality may have a deep impact on overall immunity. This is of particular relevance in aging where the elderly population becomes more susceptible to infection, cancer, autoimmune diseases, and neurodegenerative diseases amongst others. As the fraction of elderly increases worldwide, it becomes urgent to better understand the aging of the immune system to prevent and cure the elderly population. For this, a better understanding of the function and phenotype of the different immune cells and their subsets is necessary. We review here NK cell functions and phenotype in healthy aging as well as in various age-associated diseases.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of a specific telomere terminal transferase activity in Tetrahymena extracts.

          We have found a novel activity in Tetrahymena cell free extracts that adds tandem TTGGGG repeats onto synthetic telomere primers. The single-stranded DNA oligonucleotides (TTGGGG)4 and TGTGTGGGTGTGTGGGTGTGTGGG, consisting of the Tetrahymena and yeast telomeric sequences respectively, each functioned as primers for elongation, while (CCCCAA)4 and two nontelomeric sequence DNA oligomers did not. Efficient synthesis of the TTGGGG repeats depended only on addition of micromolar concentrations of oligomer primer, dGTP, and dTTP to the extract. The activity was sensitive to heat and proteinase K treatment. The repeat addition was independent of both endogenous Tetrahymena DNA and the endogenous alpha-type DNA polymerase; and a greater elongation activity was present during macronuclear development, when a large number of telomeres are formed and replicated, than during vegetative cell growth. We propose that the novel telomere terminal transferase is involved in the addition of telomeric repeats necessary for the replication of chromosome ends in eukaryotes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes.

              A highly conserved repetitive DNA sequence, (TTAGGG)n, has been isolated from a human recombinant repetitive DNA library. Quantitative hybridization to chromosomes sorted by flow cytometry indicates that comparable amounts of this sequence are present on each human chromosome. Both fluorescent in situ hybridization and BAL-31 nuclease digestion experiments reveal major clusters of this sequence at the telomeres of all human chromosomes. The evolutionary conservation of this DNA sequence, its terminal chromosomal location in a variety of higher eukaryotes (regardless of chromosome number or chromosome length), and its similarity to functional telomeres isolated from lower eukaryotes suggest that this sequence is a functional human telomere.
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                J. Biomed. Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2012
                20 November 2012
                : 2012
                : 195956
                Affiliations
                1Singapore Immunology Network (SIgN), Biopolis, Agency for Science, Technology and Research, Singapore 138648
                2Department of Immunology, School of Medicine, Reina Sofia University Hospital, IMIBIC, 14004 Cordoba, Spain
                Author notes

                Academic Editor: Thomas Liehr

                Article
                10.1155/2012/195956
                3517269
                23251076
                c207ff51-95f9-4633-b379-17bc8ccb1ed2
                Copyright © 2012 Xavier Camous et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 August 2012
                : 10 September 2012
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article