10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Insects as a model system for aging studies : Insects for aging research

      1 , 1 , 1
      Entomological Research
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway.

          In many species, reducing nutrient intake without causing malnutrition extends lifespan. Like DR (dietary restriction), modulation of genes in the insulin-signaling pathway, known to alter nutrient sensing, has been shown to extend lifespan in various species. In Drosophila, the target of rapamycin (TOR) and the insulin pathways have emerged as major regulators of growth and size. Hence we examined the role of TOR pathway genes in regulating lifespan by using Drosophila. We show that inhibition of TOR signaling pathway by alteration of the expression of genes in this nutrient-sensing pathway, which is conserved from yeast to human, extends lifespan in a manner that may overlap with known effects of dietary restriction on longevity. In Drosophila, TSC1 and TSC2 (tuberous sclerosis complex genes 1 and 2) act together to inhibit TOR (target of rapamycin), which mediates a signaling pathway that couples amino acid availability to S6 kinase, translation initiation, and growth. We find that overexpression of dTsc1, dTsc2, or dominant-negative forms of dTOR or dS6K all cause lifespan extension. Modulation of expression in the fat is sufficient for the lifespan-extension effects. The lifespan extensions are dependent on nutritional condition, suggesting a possible link between the TOR pathway and dietary restriction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sir2 mediates longevity in the fly through a pathway related to calorie restriction.

            Calorie restriction can extend life span in a variety of species including mammals, flies, nematodes, and yeast. Despite the importance of this nearly universal effect, little is understood about the molecular mechanisms that mediate the life-span-extending effect of calorie restriction in metazoans. Sir2 is known to be involved in life span determination and calorie restriction in yeast mother cells. In nematodes increased Sir2 can extend life span, but a direct link to calorie restriction has not been demonstrated. We now report that Sir2 is directly involved in the calorie-restriction life-span-extending pathway in Drosophila. We demonstrate that an increase in Drosophila Sir2 (dSir2) extends life span, whereas a decrease in dSir2 blocks the life-span-extending effect of calorie reduction or rpd3 mutations. These data lead us to propose a genetic pathway by which calorie restriction extends life span and provides a framework for genetic and pharmacological studies of life span extension in metazoans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The art and design of genetic screens: Drosophila melanogaster.

              The success of Drosophila melanogaster as a model organism is largely due to the power of forward genetic screens to identify the genes that are involved in a biological process. Traditional screens, such as the Nobel-prize-winning screen for embryonic-patterning mutants, can only identify the earliest phenotype of a mutation. This review describes the ingenious approaches that have been devised to circumvent this problem: modifier screens, for example, have been invaluable for elucidating signal-transduction pathways, whereas clonal screens now make it possible to screen for almost any phenotype in any cell at any stage of development.
                Bookmark

                Author and article information

                Journal
                Entomological Research
                Entomological Research
                Wiley
                17382297
                January 2015
                January 2015
                December 15 2014
                : 45
                : 1
                : 1-8
                Affiliations
                [1 ]Department of Biological Sciences; Inha University; Incheon Korea
                Article
                10.1111/1748-5967.12088
                c2a428fe-673a-4480-bd5c-5eb25a3d4841
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article