16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Custom Ultra-Low-Cost 3D Bioprinter Supports Cell Growth and Differentiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in 3D bioprinting have allowed the use of stem cells along with biomaterials and growth factors toward novel tissue engineering approaches. However, the cost of these systems along with their consumables is currently extremely high, limiting their applicability. To address this, we converted a 3D printer into an open source 3D bioprinter and produced a customized bioink based on accessible alginate/gelatin precursors, leading to a cost-effective solution. The bioprinter’s resolution, including line width, spreading ratio and extrusion uniformity measurements, along with the rheological properties of the bioinks were analyzed, revealing high bioprinting accuracy within the printability window. Following the bioprinting process, cell survival and proliferation were validated on HeLa Kyoto and HEK293T cell lines. In addition, we isolated and 3D bioprinted postnatal neural stem cell progenitors derived from the mouse subventricular zone as well as mesenchymal stem cells derived from mouse bone marrow. Our results suggest that our low-cost 3D bioprinter can support cell proliferation and differentiation of two different types of primary stem cell populations, indicating that it can be used as a reliable tool for developing efficient research models for stem cell research and tissue engineering.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts

          Abstract Generation of thick vascularized tissues that fully match the patient still remains an unmet challenge in cardiac tissue engineering. Here, a simple approach to 3D‐print thick, vascularized, and perfusable cardiac patches that completely match the immunological, cellular, biochemical, and anatomical properties of the patient is reported. To this end, a biopsy of an omental tissue is taken from patients. While the cells are reprogrammed to become pluripotent stem cells, and differentiated to cardiomyocytes and endothelial cells, the extracellular matrix is processed into a personalized hydrogel. Following, the two cell types are separately combined with hydrogels to form bioinks for the parenchymal cardiac tissue and blood vessels. The ability to print functional vascularized patches according to the patient's anatomy is demonstrated. Blood vessel architecture is further improved by mathematical modeling of oxygen transfer. The structure and function of the patches are studied in vitro, and cardiac cell morphology is assessed after transplantation, revealing elongated cardiomyocytes with massive actinin striation. Finally, as a proof of concept, cellularized human hearts with a natural architecture are printed. These results demonstrate the potential of the approach for engineering personalized tissues and organs, or for drug screening in an appropriate anatomical structure and patient‐specific biochemical microenvironment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Applications of Alginate-Based Bioinks in 3D Bioprinting

            Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks.

              Bioprinting is a rapidly developing technique for biofabrication. Because of its high resolution and the ability to print living cells, bioprinting has been widely used in artificial tissue and organ generation as well as microscale living cell deposition. In this paper, we present a low-cost stereolithography-based bioprinting system that uses visible light crosslinkable bioinks. This low-cost stereolithography system was built around a commercial projector with a simple water filter to prevent harmful infrared radiation from the projector. The visible light crosslinking was achieved by using a mixture of polyethylene glycol diacrylate (PEGDA) and gelatin methacrylate (GelMA) hydrogel with eosin Y based photoinitiator. Three different concentrations of hydrogel mixtures (10% PEG, 5% PEG + 5% GelMA, and 2.5% PEG + 7.5% GelMA, all w/v) were studied with the presented systems. The mechanical properties and microstructure of the developed bioink were measured and discussed in detail. Several cell-free hydrogel patterns were generated to demonstrate the resolution of the solution. Experimental results with NIH 3T3 fibroblast cells show that this system can produce a highly vertical 3D structure with 50 μm resolution and 85% cell viability for at least five days. The developed system provides a low-cost visible light stereolithography solution and has the potential to be widely used in tissue engineering and bioengineering for microscale cell patterning.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                04 November 2020
                2020
                : 8
                : 580889
                Affiliations
                [1] 1Department of Physiology, School of Medicine, University of Patras , Patras, Greece
                [2] 2Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras , Patras, Greece
                [3] 3Department of Chemistry, University of Patras , Patras, Greece
                [4] 4Department of General Biology, School of Medicine, University of Patras , Patras, Greece
                Author notes

                Edited by: Lorenzo Moroni, Maastricht University, Netherlands

                Reviewed by: Sourabh Ghosh, Indian Institute of Technology Delhi, India; Y. Shrike Zhang, Harvard Medical School, United States

                *Correspondence: Konstantinos Ioannidis, msci1425@ 123456upnet.gr

                These authors have contributed equally to this work

                This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2020.580889
                7676439
                33251196
                c2ca8c74-b744-411d-b18d-fb5462cf3748
                Copyright © 2020 Ioannidis, Danalatos, Champeris Tsaniras, Kaplani, Lokka, Kanellou, Papachristou, Bokias, Lygerou and Taraviras.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 July 2020
                : 13 October 2020
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 58, Pages: 13, Words: 0
                Categories
                Bioengineering and Biotechnology
                Original Research

                3d bioprinting,low cost 3d bioprinter,stem cell biofabrication,postnatal radial glial cells,bone-marrow mesenchymal stem cell,alginate-gelatin bioink

                Comments

                Comment on this article