2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A review: progress in preventing tissue adhesions from a biomaterial perspective

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Post-operation adhesions are accrued by inflammation and result in tissue adhesions. Fortunately, biomaterials have shown promising anti-adhesive bioactivity for dealing with such issues.

          Abstract

          Postoperative adhesions (POA) are one of the main problems suffered by patients and are a common complaint. It is considered to be closely associated with the healing mechanism of damaged tissues. Tissue adhesions accompany other symptoms such as inflammation, pain, and even dyskinesia under certain conditions, compromising the patients’ quality of life. On the other hand, common treatments involve high costs, re-surgery or long-term hospital stays. Therefore, alternative approaches need to be formulated so that aforementioned problems can be resolved. To this end, a review of recent advances in this context is imperative. In this review, we have highlighted the mechanism of adhesion formation, advances in common therapeutic approaches, and prospective treatments in preventing tissue adhesions. Based on the literature, it can be determined that the disadvantages of available commercial products in the treatment of tissue adhesion have led researchers to utilize alternative methods for designing anti-adhesive products with different structures such as electrospun fibrous mats, hydrogels, and nanospheres. These studies are on the fast track in producing optimal anti-adhesion materials. We hope that this article can attract attention by showing various mechanisms and solutions involved in adhesion problems and inspire the further development of anti-adhesion biomaterials.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention.

          Postsurgical peritoneal adhesions are very common and serious complication after surgery. Biodegradable and injectable hydrogels derived from natural polysaccharides are ideal biomaterials for prevention of postoperative adhesion. In this work, we report a class of injectable, biodegradable, and non-toxic hydrogel derived from N, O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (A-HA), without requirement of any chemical linkers or radiant light sources. NOCC was prepared by introducing carboxymethyl groups to the N-position and the O-position of chitosan, and A-HA was prepared using periodate oxidation method. The gelation is attributed to the Schiff base between the amino groups of NOCC and aldehyde groups in A-HA, and the hydrogel precursors cross-linked to form a flexible hydrogel. NOCC, A-HA, and NOCC/A-HA hydrogel extract exhibited very low cytotoxicity and hemolysis, and the acute toxicity tests showed that the hydrogel was non-toxic. Besides, the highly porous three-dimensional hydrogel can supported the growth and proliferation of the cells encapsulated in the hydrogels, but was not favorable for the attachment of fibroblasts to the surface, suggesting that the NOCC/A-HA hydrogel can be developed for adhesion prevention. The hydrogel was susceptible to the lysozyme and can be degraded within 2 weeks in vivo. Furthermore, we employed a rat model of sidewall defect-cecum abrasion to investigate the efficacy of NOCC/A-HA hydrogel in preventing post-operative peritoneal adhesions. A significant reduction of peritoneal adhesion formation was found in the NOCC/A-HA-treated group, compared with commercial hyaluronic acid (HA) hydrogel group and normal saline group. In addition, the potential anti-adhesion mechanism of NOCC/A-HA hydrogel was discussed, which may attribute to the combination of barrier function and bioactivity of NOCC and A-HA. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration

            Natural bone is a mineralized biological material, which serves a supportive and protective framework for the body, stores minerals for metabolism, and produces blood cells nourishing the body. Normally, bone has an innate capacity to heal from damage. However, massive bone defects due to traumatic injury, tumor resection, or congenital diseases pose a great challenge to reconstructive surgery. Scaffold-based tissue engineering (TE) is a promising strategy for bone regenerative medicine, because biomaterial scaffolds show advanced mechanical properties and a good degradation profile, as well as the feasibility of controlled release of growth and differentiation factors or immobilizing them on the material surface. Additionally, the defined structure of biomaterial scaffolds, as a kind of mechanical cue, can influence cell behaviors, modulate local microenvironment and control key features at the molecular and cellular levels. Recently, nano/micro-assisted regenerative medicine becomes a promising application of TE for the reconstruction of bone defects. For this reason, it is necessary for us to have in-depth knowledge of the development of novel nano/micro-based biomaterial scaffolds. Thus, we herein review the hierarchical structure of bone, and the potential application of nano/micro technologies to guide the design of novel biomaterial structures for bone repair and regeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioinspired Designs of Superhydrophobic and Superhydrophilic Materials

              Bioinspired designs of superhydrophobic and superhydrophilic materials have been an important and fascinating area of research in recent years for their extensive potential application prospects from industry to our daily life. Despite extensive progress, existing research achievements are far from real applications. From biomimetic performance to service life, the related research has faced serious problems at present. A timely outlook is therefore necessary to summarize the existing research, to discuss the challenges faced, and to propose constructive advice for the ongoing scientific trend. Here, we comb the process of development of bioinspired superhydrophobic and superhydrophilic materials at first. Then, we also describe how to design artificial superhydrophobic and superhydrophilic materials. Furthermore, current challenges faced by bioinspired designs of superhydrophobic and superhydrophilic materials are pointed out, separately, and the possible solutions are discussed. Emerging applications in this field are also briefly considered. Finally, the development trend within this field is highlighted to lead future research.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                BSICCH
                Biomaterials Science
                Biomater. Sci.
                Royal Society of Chemistry (RSC)
                2047-4830
                2047-4849
                April 20 2021
                2021
                : 9
                : 8
                : 2850-2873
                Affiliations
                [1 ]Department of Biomedical Engineering
                [2 ]Amirkabir University
                [3 ]Tehran
                [4 ]Iran
                Article
                10.1039/D0BM02023K
                33710194
                c2d13ba1-368d-4fab-ace3-68787614b52f
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article