35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between Eight Functional Polymorphisms and Haplotypes in the Cholesterol Ester Transfer Protein (CETP) Gene and Dyslipidemia in National Minority Adults in the Far West Region of China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have investigated the relationship between the polymorphisms and haplotypes in the CETP gene, and dyslipidemia among the Xinjiang Kazak and Uyghur populations in China. A total of 712 patients with dyslipidemia and 764 control subjects of CETP gene polymorphism at rs12149545, rs3764261, rs1800775, rs711752, rs708272, rs289714, rs5882, and rs1801706 loci were studied by the Snapshot method, linkage disequilibrium analysis and haplotype construction. The results are as follows: (1) the minor allele of eight loci of frequencies in the two groups were different from other results of similar studies in other countries; (2) In the linear regression analysis, the HDL-C levels of rs708272 TT, rs1800775 AA, rs289714 CC and rs711752 AA genotypes were significantly higher than those of other genotypes, however, the rs3764261 GG and rs12149545 GG genotypes were significantly lower than those of other genotypes in the two ethnic groups. The HDL-C levels of the rs12149545 GG genotype were lower than those of other genotypes; (3) in the control group, the rs708272 CT genotype of TG levels were lower than in the CC genotype, the T genotype of LDL-C levels were lower than in the CC genotype, and the HDL-C levels were higher than in the CT genotype; the rs1800775 AC genotype of TG levels were higher than in the AA genotype, the rs711752 AG genotype of TG levels were lower than in the GG genotype, the AA genotype LDL-C levels were lower than in the GG genotype, and the HDL-C levels were higher than in the AG genotype; the rs1800775 AC genotype of TG levels were higher than in the AA genotype. In the dyslipidemia group, the rs708272 TT genotype of TC and LDL-C levels were higher than in the CT genotype and the rs3764261 TT genotype of TC levels were higher than in the GG genotype. The rs711752 AA genotype of TC and LDL-C levels were higher than in the AG genotype, and the rs12149545 AA genotype of TC and LDL-C levels were higher than in the GG genotype; (4) perfect Linkage Disequilibrium was observed for two sets of two SNPs: rs3764261 and rs12149545; rs711752 and rs708272. (5) Using SHEsis software analysis, the five A/T/A/A/T/C/A/G, A/T/A/A/T/T/G/A, G/G/A/G/C/C/G/G, G/G/C/G/C/C/A/G and G/G/C/G/C/T/G/G haplotypes were between dyslipidemia group and control group statistically significantly different ( p < 0.05 in each case). The polymorphism of CETP genes rs708272, rs3764261, rs1800775, rs711752, rs12149545 was closely related to the dyslipidemia in the Xinjiang Uyghur and Kazakh ethnic groups; and the rs708272 T, rs3764261 T, rs711752 A, and rs12149545 A alleles could reduce risk of dyslipidemia in the Uyghur and Kazakh populations, however, the rs1800775 C allele showed risk factors.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Linkage disequilibrium in the human genome.

          With the availability of a dense genome-wide map of single nucleotide polymorphisms (SNPs), a central issue in human genetics is whether it is now possible to use linkage disequilibrium (LD) to map genes that cause disease. LD refers to correlations among neighbouring alleles, reflecting 'haplotypes' descended from single, ancestral chromosomes. The size of LD blocks has been the subject of considerable debate. Computer simulations and empirical data have suggested that LD extends only a few kilobases (kb) around common SNPs, whereas other data have suggested that it can extend much further, in some cases greater than 100 kb. It has been difficult to obtain a systematic picture of LD because past studies have been based on only a few (1-3) loci and different populations. Here, we report a large-scale experiment using a uniform protocol to examine 19 randomly selected genomic regions. LD in a United States population of north-European descent typically extends 60 kb from common alleles, implying that LD mapping is likely to be practical in this population. By contrast, LD in a Nigerian population extends markedly less far. The results illuminate human history, suggesting that LD in northern Europeans is shaped by a marked demographic event about 27,000-53,000 years ago.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Linkage disequilibrium in humans: models and data.

            In this review, we describe recent empirical and theoretical work on the extent of linkage disequilibrium (LD) in the human genome, comparing the predictions of simple population-genetic models to available data. Several studies report significant LD over distances longer than those predicted by standard models, whereas some data from short, intergenic regions show less LD than would be expected. The apparent discrepancies between theory and data present a challenge-both to modelers and to human geneticists-to identify which important features are missing from our understanding of the biological processes that give rise to LD. Salient features may include demographic complications such as recent admixture, as well as genetic factors such as local variation in recombination rates, gene conversion, and the potential segregation of inversions. We also outline some implications that the emerging patterns of LD have for association-mapping strategies. In particular, we discuss what marker densities might be necessary for genomewide association scans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathophysiology of acute coronary syndrome.

              Despite improvements in interventional and pharmacological therapy for atherosclerotic disease, it is still the leading cause of death in the developed world. Hence, there is a need for further development of more effective therapeutic approaches. This requires better understanding of the molecular mechanisms and pathophysiology of the disease. Recent research in the last decade has changed our view of acute coronary syndrome (ACS): from a mere lipid deposition to an inflammatory disease; from ACS exclusively due to plaque rupture to the novel definitions of plaque erosion or calcified nodule; from the notion of a superimposed thrombus with necessary lethal consequences to the concept of healed plaques and thrombus contributing to plaque progression. In the hope of improving our understanding of ACS, all these recently discovered concepts are reviewed in this article.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                16 December 2015
                December 2015
                : 12
                : 12
                : 15979-15992
                Affiliations
                Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China; hyh6133@ 123456sina.com (Y.H.); 13399931625@ 123456163.com (Y.D.); liujiaming@ 123456shzu.edu.cn (J.L.); zmberry@ 123456foxmail.com (M.Z.); marulin@ 123456126.com (R.M.); guoheng@ 123456shzu.edu.cn (H.G.); kwang311@ 123456hotmail.com (K.W.); hejia123.shihezi@ 123456163.com (J.H.); erniu19880215@ 123456sina.com (Y.Y.); ruidongsheng@ 123456gmail.com (D.R.); sunfeng@ 123456bjmu.edu.cn (F.S.); murat08123@ 123456163.com (L.M.); niuqiang1214@ 123456163.com (Q.N.); yfyxxzjy@ 123456126.com (J.Z.); lishugang@ 123456ymail.com (S.L.)
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Correspondence: pge888@ 123456sina.com ; Tel.: +86-180-0993-2625
                Article
                ijerph-12-15036
                10.3390/ijerph121215036
                4690972
                26694435
                c366c2b5-9620-47ad-a448-ddf891379aca
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 October 2015
                : 10 December 2015
                Categories
                Article

                Public health
                cetp gene,polymorphism,haplotype,dyslipidemia,national minority,snps
                Public health
                cetp gene, polymorphism, haplotype, dyslipidemia, national minority, snps

                Comments

                Comment on this article