0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found
      Is Open Access

      Endothelial acid ceramidase in exosome-mediated release of NLRP3 inflammasome products during hyperglycemia: Evidence from endothelium-specific deletion of Asah1 gene

      , , , ,

      Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids

      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Exosomes have been demonstrated to be one of the mechanisms mediating the release of intracellular signaling molecules to conduct cell-to-cell communication. However, it remains unknown whether and how exosomes mediate the release of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome products such as interleukin-1 beta (IL-1β) from endothelial cells. The present study hypothesized that lysosomal acid ceramidase (AC) determines the fate of multivesicular bodies (MVBs) to control the exosome-mediated release of NLRP3 inflammasome products during hyperglycemia. Using a streptozotocin (STZ)-induced diabetes mouse model, we found that endothelium-specific AC gene knockout mice ( <i>Asah1</i> <sup>fl/fl</sup>/EC <sup>cre</sup>) significantly enhanced the formation and activation of NLRP3 inflammasomes in coronary arterial ECs (CECs). These mice also had increased thickening of the coronary arterial wall and reduced expression of tight junction protein compared to wild-type (WT/WT) littermates. We also observed the expression of exosome markers such as CD63 and alkaline phosphatase (ALP) was augmented in STZ-treated <i>Asah1</i> <sup>fl/fl</sup>/EC <sup>cre</sup> mice compared to WT/WT mice, which was accompanied by an increased IL-1β release of exosomes. In the primary cultures of CECs, we demonstrated that AC deficiency markedly enhanced the formation and activation of NLRP3 inflammasomes, but significantly down-regulated tight junction proteins when these cells were exposed to high levels of glucose. The CECs from <i>Asah1</i> <sup>fl/fl</sup>/EC <sup>cre</sup> mice had decreased MVB-lysosome interaction and increased IL-1β–containing exosome release in response to high glucose stimulation. Together, these results suggest that AC importantly controls exosome-mediated release of NLRP3 inflammasome products in CECs, which is enhanced by AC deficiency leading to aggravated arterial inflammatory response during hyperglycemia. </p>

          Related collections

          Author and article information

          Journal
          Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
          Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
          Elsevier BV
          13881981
          October 2019
          October 2019
          : 158532
          Article
          10.1016/j.bbalip.2019.158532
          6909250
          31647995
          © 2019

          Comments

          Comment on this article