13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Difficulty of Effectively Using Allocentric Prior Information in a Spatial Recall Task

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prior information represents the long-term statistical structure of an environment. For example, colds develop more often than throat cancer, making the former a more likely diagnosis for a sore throat. There is ample evidence for effective use of prior information during a variety of perceptual tasks, including the ability to recall locations using an egocentric (self-based) frame. However, it is not yet known if people can use prior information effectively when using an allocentric (world-based) frame. Forty-eight adults were shown sixty sets of three target locations in a sparse virtual environment with three beacons. The targets were drawn from one of four prior distributions. They were then asked to point to the targets after a delay and a change in perspective. While searches were biased towards the beacons, we did not find any evidence that participants successfully exploited the prior distributions of targets. These results suggest that allocentric reasoning does not conform to normative Bayesian models: we saw no evidence for use of priors in our cognitively-complex (allocentric) task, unlike in previous, simpler (egocentric) recall tasks. It is possible that this reflects the high biological cost of processing precise allocentric information.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Bayesian integration in sensorimotor learning.

          When we learn a new motor skill, such as playing an approaching tennis ball, both our sensors and the task possess variability. Our sensors provide imperfect information about the ball's velocity, so we can only estimate it. Combining information from multiple modalities can reduce the error in this estimate. On a longer time scale, not all velocities are a priori equally probable, and over the course of a match there will be a probability distribution of velocities. According to bayesian theory, an optimal estimate results from combining information about the distribution of velocities-the prior-with evidence from sensory feedback. As uncertainty increases, when playing in fog or at dusk, the system should increasingly rely on prior knowledge. To use a bayesian strategy, the brain would need to represent the prior distribution and the level of uncertainty in the sensory feedback. Here we control the statistical variations of a new sensorimotor task and manipulate the uncertainty of the sensory feedback. We show that subjects internally represent both the statistical distribution of the task and their sensory uncertainty, combining them in a manner consistent with a performance-optimizing bayesian process. The central nervous system therefore employs probabilistic models during sensorimotor learning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The free-energy principle: a rough guide to the brain?

            This article reviews a free-energy formulation that advances Helmholtz's agenda to find principles of brain function based on conservation laws and neuronal energy. It rests on advances in statistical physics, theoretical biology and machine learning to explain a remarkable range of facts about brain structure and function. We could have just scratched the surface of what this formulation offers; for example, it is becoming clear that the Bayesian brain is just one facet of the free-energy principle and that perception is an inevitable consequence of active exchange with the environment. Furthermore, one can see easily how constructs like memory, attention, value, reinforcement and salience might disclose their simple relationships within this framework.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ventriloquist effect results from near-optimal bimodal integration.

              Ventriloquism is the ancient art of making one's voice appear to come from elsewhere, an art exploited by the Greek and Roman oracles, and possibly earlier. We regularly experience the effect when watching television and movies, where the voices seem to emanate from the actors' lips rather than from the actual sound source. Originally, ventriloquism was explained by performers projecting sound to their puppets by special techniques, but more recently it is assumed that ventriloquism results from vision "capturing" sound. In this study we investigate spatial localization of audio-visual stimuli. When visual localization is good, vision does indeed dominate and capture sound. However, for severely blurred visual stimuli (that are poorly localized), the reverse holds: sound captures vision. For less blurred stimuli, neither sense dominates and perception follows the mean position. Precision of bimodal localization is usually better than either the visual or the auditory unimodal presentation. All the results are well explained not by one sense capturing the other, but by a simple model of optimal combination of visual and auditory information.
                Bookmark

                Author and article information

                Contributors
                james.negen@durham.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 April 2020
                24 April 2020
                2020
                : 10
                : 7000
                Affiliations
                ISNI 0000 0000 8700 0572, GRID grid.8250.f, Department of Psychology, , Durham University, ; Durham, United Kingdom
                Author information
                http://orcid.org/0000-0001-6614-7775
                Article
                62775
                10.1038/s41598-020-62775-5
                7181880
                32332793
                c4126adf-4fa2-47b1-bc3c-4fba8337ff20
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 August 2019
                : 10 March 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000913, James S. McDonnell Foundation (McDonnell Foundation);
                Award ID: 220020240
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100000269, RCUK | Economic and Social Research Council (ESRC);
                Award ID: ES/N01846X/1
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100010663, EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council);
                Award ID: 820185
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                cognitive neuroscience,human behaviour
                Uncategorized
                cognitive neuroscience, human behaviour

                Comments

                Comment on this article