14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carbonic anhydrase IX (CA IX) is a transmembrane protein whose expression is strongly induced by hypoxia in a broad spectrum of human tumours. It is a highly active enzyme functionally involved in both pH control and cell adhesion. Its presence in tumours usually indicates poor prognosis. Ectodomain of CA IX is detectable in the culture medium and body fluids of cancer patients, but the mechanism of its shedding has not been thoroughly investigated. Here, we analysed several cell lines with natural and ectopic expression of CA IX to show that its ectodomain release is sensitive to metalloprotease inhibitor batimastat (BB-94) and that hypoxia maintains the normal rate of basal shedding, thus leading to concomitant increase in cell-associated and extracellular CA IX levels. Using CHO-M2 cells defective in shedding, we demonstrated that the basal CA IX ectodomain release does not require a functional TNF α-converting enzyme (TACE/ADAM17), whereas the activation of CA IX shedding by both phorbol-12-myristate-13-acetate and pervanadate is TACE-dependent. Our results suggest that the cleavage of CA IX ectodomain is a regulated process that responds to physiological factors and signal transduction stimuli and may therefore contribute to adaptive changes in the protein composition of tumour cells and their microenvironment.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Hypoxia-inducible expression of tumor-associated carbonic anhydrases.

          The transcriptional complex hypoxia-inducible factor-1 (HIF-1) has emerged as an important mediator of gene expression patterns in tumors, although the range of responding genes is still incompletely defined. Here we show that the tumor-associated carbonic anhydrases (CAs) are tightly regulated by this system. Both CA9 and CA12 were strongly induced by hypoxia in a range of tumor cell lines. In renal carcinoma cells that are defective for the von Hippel-Lindau (VHL) tumor suppressor, up-regulation of these CAs is associated with loss of regulation by hypoxia, consistent with the critical function of pVHL in the regulation of HIF-1. Further studies of CA9 defined a HIF-1-dependent hypoxia response element in the minimal promoter and demonstrated that tight regulation by the HIF/pVHL system was reflected in the pattern of CA IX expression within tumors. Generalized up-regulation of CA IX in VHL-associated renal cell carcinoma contrasted with focal perinecrotic expression in a variety of non-VHL-associated tumors. In comparison with vascular endothelial growth factor mRNA, expression of CA IX demonstrated a similar, although more tightly circumscribed, pattern of expression around regions of necrosis and showed substantial although incomplete overlap with activation of the hypoxia marker pimonidazole. These studies define a new class of HIF-1-responsive gene, the activation of which has implications for the understanding of hypoxic tumor metabolism and which may provide endogenous markers for tumor hypoxia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH.

            Acidic extracellular pH (pHe) is a typical attribute of a tumor microenvironment, which has an impact on cancer development and treatment outcome. It was believed to result from an accumulation of lactic acid excessively produced by glycolysis. However, metabolic profiles of glycolysis-impaired tumors have revealed that CO2 is a significant source of acidity, thereby indicating a contribution of carbonic anhydrase (CA). The tumor-associated CA IX isoform is the best candidate, because its extracellular enzyme domain is highly active, expression is induced by hypoxia and correlates with poor prognosis. This study provides the first evidence for the role of CA IX in the control of pHe. We show that CA IX can acidify the pH of the culture medium in hypoxia but not in normoxia. This acidification can be perturbed by deletion of the enzyme active site and inhibited by CA IX-selective sulfonamides, which bind only to hypoxic cells containing CA IX. Our findings suggest that hypoxia regulates both expression and activity of CA IX in order to enhance the extracellular acidification, which may have important implications for tumor progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Membrane-Type 1 Matrix Metalloproteinase Cleaves Cd44 and Promotes Cell Migration

              Migratory cells including invasive tumor cells frequently express CD44, a major receptor for hyaluronan and membrane-type 1 matrix metalloproteinase (MT1-MMP) that degrades extracellular matrix at the pericellular region. In this study, we demonstrate that MT1-MMP acts as a processing enzyme for CD44H, releasing it into the medium as a soluble 70-kD fragment. Furthermore, this processing event stimulates cell motility; however, expression of either CD44H or MT1-MMP alone did not stimulate cell motility. Coexpression of MT1-MMP and mutant CD44H lacking the MT1-MMP–processing site did not result in shedding and did not promote cell migration, suggesting that the processing of CD44H by MT1-MMP is critical in the migratory stimulation. Moreover, expression of the mutant CD44H inhibited the cell migration promoted by CD44H and MT1-MMP in a dominant-negative manner. The pancreatic tumor cell line, MIA PaCa-2, was found to shed the 70-kD CD44H fragment in a MT1-MMP–dependent manner. Expression of the mutant CD44H in the cells as well as MMP inhibitor treatment effectively inhibited the migration, suggesting that MIA PaCa-2 cells indeed use the CD44H and MT1-MMP as migratory devices. These findings revealed a novel interaction of the two molecules that have each been implicated in tumor cell migration and invasion.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                British Journal of Cancer
                Nature Publishing Group
                0007-0920
                1532-1827
                08 November 2005
                22 November 2005
                28 November 2005
                : 93
                : 11
                : 1267-1276
                Affiliations
                [1 ]Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
                [2 ]Medical Oncology Research Program, Vall d'Hebron University Hospital Research Institute, Barcelona 08035, Spain
                Author notes
                [* ]Author for correspondence: virusipa@ 123456savba.sk
                Article
                6602861
                10.1038/sj.bjc.6602861
                2361518
                16278664
                c4891b19-f320-4cde-aca0-612beb28081d
                Copyright 2005, Cancer Research UK
                History
                : 24 September 2005
                : 06 October 2005
                Categories
                Translational Therapeutics

                Oncology & Radiotherapy
                carbonic anhydrase ix,ectodomain shedding,metalloproteases,tace/adam17,hypoxia

                Comments

                Comment on this article